1,296 research outputs found
Evidence for Quark-Hadron Duality in the Proton Spin Asymmetry A_1
Spin-dependent lepton-nucleon scattering data have been used to investigate the validity of the concept of quark-hadron duality for the spin asymmetry A_1. Longitudinally polarized positrons were scattered off a longitudinally polarized hydrogen target for values of Q^2 between 1.2 and 12 GeV^2 and values of W^2 between 1 and 4 GeV^2. The average double-spin asymmetry in the nucleon resonance region is found to agree with that measured in deep-inelastic scattering at the same values of the Bjorken scaling variable x. This finding implies that the description of A_1 in terms of quark degrees of freedom is valid also in the nucleon resonance region for values of Q^2 above 1.6 GeV^2
Preconditioning Kernel Matrices
The computational and storage complexity of kernel machines presents the
primary barrier to their scaling to large, modern, datasets. A common way to
tackle the scalability issue is to use the conjugate gradient algorithm, which
relieves the constraints on both storage (the kernel matrix need not be stored)
and computation (both stochastic gradients and parallelization can be used).
Even so, conjugate gradient is not without its own issues: the conditioning of
kernel matrices is often such that conjugate gradients will have poor
convergence in practice. Preconditioning is a common approach to alleviating
this issue. Here we propose preconditioned conjugate gradients for kernel
machines, and develop a broad range of preconditioners particularly useful for
kernel matrices. We describe a scalable approach to both solving kernel
machines and learning their hyperparameters. We show this approach is exact in
the limit of iterations and outperforms state-of-the-art approximations for a
given computational budget
Giant Charge Relaxation Resistance in the Anderson Model
We investigate the dynamical charge response of the Anderson model viewed as
a quantum RC circuit. Applying a low-energy effective Fermi liquid theory, a
generalized Korringa-Shiba formula is derived at zero temperature, and the
charge relaxation resistance is expressed solely in terms of static
susceptibilities which are accessible by Bethe ansatz. We identify a giant
charge relaxation resistance at intermediate magnetic fields related to the
destruction of the Kondo singlet. The scaling properties of this peak are
computed analytically in the Kondo regime. We also show that the resistance
peak fades away at the particle-hole symmetric point.Comment: 4 pages, 1 figur
Single-spin azimuthal asymmetries in electroproduction of neutral pions in semi-inclusive deep-inelastic scattering
A single-spin asymmetry in the azimuthal distribution of neutral pions relative to the lepton scattering plane has been measured for the first time in deep-inelastic scattering of positrons off longitudinally polarized protons. The analyzing power in the sinφ moment of the cross section is 0.019±0.007(stat)±0.003(syst). This result is compared to single-spin asymmetries for charged pion production measured in the same kinematic range. The π^0 asymmetry is of the same size as the π^+ asymmetry and shows a similar dependence on the relevant kinematic variables. The asymmetry is described by a phenomenological calculation based on a fragmentation function that represents sensitivity to the transverse polarization of the struck quark
Measurement of the Beam-Spin Azimuthal Asymmetry Associated with Deeply-Virtual Compton Scattering
The beam-spin asymmetry in hard electroproduction of photons has been measured. The data have been accumulated by the HERMES experiment at DESY using the HERA 27.6 GeV longitudinally polarized positron beam and an unpolarized hydrogen-gas target. The asymmetry in the azimuthal distribution of the produced photons in the angle φ relative to the lepton scattering plane was determined with respect to the helicity state of the incoming positron beam. The beam-spin analyzing power in the sinφ moment was measured to be -0.23±0.04(stat)±0.03(syst) in the missing-mass range below 1.7 GeV. The observed asymmetry is attributed to the interference of the Bethe-Heitler and deeply virtual Compton scattering processes
Violation of the Wiedemann-Franz law for one-dimensional ultracold atomic gases
We study energy and particle transport for one-dimensional strongly
interacting bosons through a ballistic single channel connecting two atomic
reservoirs. We show the emergence of particle- and energy-current separation,
leading to the violation of the Wiedemann-Franz law. As a consequence, we
predict different time scales for the equilibration of temperature and
particle imbalances between the reservoirs. Going beyond the linear spectrum
approximation, we show the emergence of thermoelectric effects, which could be
controlled by either tuning interactions or the temperature. Our results
describe, in a unified picture, fermions in condensed-matter devices and
bosons in ultracold atom setups. We conclude by discussing the effects of a
controllable disorder
Discussion of the paper: "Sampling schemes for generalized linear Dirichlet process random effects models” by M. Kyung, J. Gill, and G. Casella
Parameter inference in mechanistic models of cellular regulation and signalling pathways using gradient matching
A challenging problem in systems biology is parameter inference in mechanistic models of signalling pathways. In the present article, we investigate an approach based on gradient matching and nonparametric Bayesian modelling with Gaussian processes. We evaluate the method on two biological systems, related to the regulation of PIF4/5 in Arabidopsis thaliana, and the JAK/STAT signal transduction pathway
Evidence for a Single-Spin Azimuthal Asymmetry in Semi-inclusive Pion Electroproduction
Single-spin asymmetries for semi-inclusive pion production in deep-inelastic scattering have been measured for the first time. A significant target-spin asymmetry of the distribution in the azimuthal angle φ of the pion relative to the lepton scattering plane was formed for π^+ electroproduction on a longitudinally polarized hydrogen target. The corresponding analyzing power in the sinφ moment of the cross section is 0.022±0.005±0.003. This result can be interpreted as the effect of terms in the cross section involving chiral-odd spin distribution functions in combination with a chiral-odd fragmentation function that is sensitive to the transverse polarization of the fragmenting quark
Tomato ionomic approach for food fortification and safety.
Food fortification is an issue of paramount of importance for people living both in developed
and in developing countries. Among substances listed as "nutriceuticals", essential minerals have
been recognised for their involvement in several healthy issues, involving all ages. In this frame,
food plants are playing a pivotal role since their capability to compartmentalise ions and proteinmetal
complexes in edible organs. Conversely, the accumulation of high metal levels in those
organs may lead to safety problems. In the recent years, thanks to the availability of new and
improved analytical apparatus in both ionic and genomic/transcrittomics areas, it is became feasible
to couple data coming from plant physiology and genetics. Ionomics is the discipline that studies
the cross-analysis of both data sets. Our group, in the frame of GenoPom project granted by MiUR,
is interested to study the ionomics of tomatoes cultivars derived by breeding programmes in which
wild relatives have been used to transfer several useful traits, such as resistance to biotic or abiotic
stresses, fruit composition and textiture, etc. The introgression of the wild genome into the
cultivated one produces new gene combinations. They might lead to the expression of some traits,
such as increased or reduced adsorption of some metals and their exclusion or loading into edible
organs, thus strongly involving the nutritional food value. Our final goal is to put together data
coming from ions homeostasis and gene expression analyses, thus obtaining an ionomic tomato
map related to ions absorption, translocation and accumulation in various plant organs, fruits
included. To follow our hypothesis, we are studying the ionome of Solanum lycopersicum cv. M82
along with 76 Introgression Lines (ILs) produced by interspecific crosses between this cultivar and
the wild species S. pennellii. These ILs are homozygous for small portions of the wild species
genome introgressed into the domesticated M82 one. They are used as a useful tool for mapping
QTL associated with many traits of interest. It is worthy to note that, until now, little information is
available on QTL for ions accumulation in tomato. Moreover, as our knowledge, effects of new
gene combinations in introgressed lines on ions uptake related to food safety have not been
extensively studied. In this presentation we show results coming from the ionome analysis, carried
out on S . lycopersicum M82 and several ILs. Plants were grown in pots in a greenhouse and
watered with deionised water Thirty day-old plants were left to grow for 15 days in the presence of
non-toxic concentration of Cd, Pb, As, Cr and Zn given combined. Leaves of all plants were then
harvested and stored at -80°C for ionome and gene expression analyses. Preliminary results of
ionome analysis of S. lycopersicum M82 and several ILs, carried out using an ICP-MS, showed that
traits correlated to toxic metals and micronutrients accumulation in apical leaves were significantly
modified in response to specific genetic backgrounds. Those results are perhaps due to the
introgression of traits linked to uptake, translocation and accumulation of useful and/or toxic metal
into plant apical leaves and to interactions of the wild type introgressed genomic regions with the
cultivated genome. Also, data are shown on the identification and isolation of Solanum gene
sequences related to ions uptake, translocation and accumulation, useful for further real-time gene
expression evaluation in both cultivated and ILs during the treatments with the above-mentioned
metals
- …
