5,192 research outputs found

    Algebraic Model for scattering in three-s-cluster systems. I. Theoretical Background

    Full text link
    A framework to calculate two-particle matrix elements for fully antisymmetrized three-cluster configurations is presented. The theory is developed for a scattering situation described in terms of the Algebraic Model. This means that the nuclear many-particle state and its asymptotic behaviour are expanded in terms of oscillator states of the intra-cluster coordinates. The Generating Function technique is used to optimize the calculation of matrix elements. In order to derive the dynamical equations, a multichannel version of the Algebraic Model is presented.Comment: 20 pages, 1 postscript figure, submitted to Phys. Rev.

    Projector operators for the no-core shell model

    Get PDF
    Projection operators for the use within ab initio no-core shell model, are suggested.Comment: 3 page

    Magnetic properties and magnetostructural phase transitions in Ni2+xMn1-xGa shape memory alloys

    Full text link
    A systematic study of magnetic properties of Ni2+xMn1-xGa (0 \le x \le 0.19) Heusler alloys undergoing structural martensite-austenite transformations while in ferromagnetic state has been performed. From measurements of spontaneous magnetization, Ms(T), jumps \Delta M at structural phase transitions were determined. Virtual Curie temperatures of the martensite were estimated from the comparison of magnetization in martensitic and austenitic phases. Both saturation magnetic moments in ferromagnetic state and effective magnetic moments in paramagnetic state of Mn and Ni atoms were estimated and the influence of delocalization effects on magnetism in these alloys was discussed. The experimental results obtained show that the shift of martensitic transition temperature depends weakly on composition. The values of this shift are in good correspondence with Clapeyron-Clausius formalism taking into account the experimental data on latent heat at martensite-austenite transformations.Comment: 7 pages, 8 figure

    Deflection of coronal rays by remote CMEs: shock wave or magnetic pressure?

    Full text link
    We analyze five events of the interaction of coronal mass ejections (CMEs) with the remote coronal rays located up to 90^\circ away from the CME as observed by the SOHO/LASCO C2 coronagraph. Using sequences of SOHO/LASCO C2 images, we estimate the kink propagation in the coronal rays during their interaction with the corresponding CMEs ranging from 180 to 920 km/s within the interval of radial distances form 3 R. to 6 R. . We conclude that all studied events do not correspond to the expected pattern of shock wave propagation in the corona. Coronal ray deflection can be interpreted as the influence of the magnetic field of a moving flux rope related to a CME. The motion of a large-scale flux rope away from the Sun creates changes in the structure of surrounding field lines, which are similar to the kink propagation along coronal rays. The retardation of the potential should be taken into account since the flux rope moves at high speed comparable with the Alfven speed.Comment: Accepted for Publication in Solar Physic
    corecore