5,192 research outputs found
Algebraic Model for scattering in three-s-cluster systems. I. Theoretical Background
A framework to calculate two-particle matrix elements for fully
antisymmetrized three-cluster configurations is presented. The theory is
developed for a scattering situation described in terms of the Algebraic Model.
This means that the nuclear many-particle state and its asymptotic behaviour
are expanded in terms of oscillator states of the intra-cluster coordinates.
The Generating Function technique is used to optimize the calculation of matrix
elements. In order to derive the dynamical equations, a multichannel version of
the Algebraic Model is presented.Comment: 20 pages, 1 postscript figure, submitted to Phys. Rev.
Projector operators for the no-core shell model
Projection operators for the use within ab initio no-core shell model, are
suggested.Comment: 3 page
Magnetic properties and magnetostructural phase transitions in Ni2+xMn1-xGa shape memory alloys
A systematic study of magnetic properties of Ni2+xMn1-xGa (0 \le x \le 0.19)
Heusler alloys undergoing structural martensite-austenite transformations while
in ferromagnetic state has been performed. From measurements of spontaneous
magnetization, Ms(T), jumps \Delta M at structural phase transitions were
determined. Virtual Curie temperatures of the martensite were estimated from
the comparison of magnetization in martensitic and austenitic phases. Both
saturation magnetic moments in ferromagnetic state and effective magnetic
moments in paramagnetic state of Mn and Ni atoms were estimated and the
influence of delocalization effects on magnetism in these alloys was discussed.
The experimental results obtained show that the shift of martensitic transition
temperature depends weakly on composition. The values of this shift are in good
correspondence with Clapeyron-Clausius formalism taking into account the
experimental data on latent heat at martensite-austenite transformations.Comment: 7 pages, 8 figure
Deflection of coronal rays by remote CMEs: shock wave or magnetic pressure?
We analyze five events of the interaction of coronal mass ejections (CMEs)
with the remote coronal rays located up to 90^\circ away from the CME as
observed by the SOHO/LASCO C2 coronagraph. Using sequences of SOHO/LASCO C2
images, we estimate the kink propagation in the coronal rays during their
interaction with the corresponding CMEs ranging from 180 to 920 km/s within the
interval of radial distances form 3 R. to 6 R. . We conclude that all studied
events do not correspond to the expected pattern of shock wave propagation in
the corona. Coronal ray deflection can be interpreted as the influence of the
magnetic field of a moving flux rope related to a CME. The motion of a
large-scale flux rope away from the Sun creates changes in the structure of
surrounding field lines, which are similar to the kink propagation along
coronal rays. The retardation of the potential should be taken into account
since the flux rope moves at high speed comparable with the Alfven speed.Comment: Accepted for Publication in Solar Physic
- …
