1,691 research outputs found
The white dwarf in dwarf nova SDSS J080434.20+510349.2: Entering the instability strip?
SDSS J080434.20+510349.2 is the WZ type binary that displayed rare outburst
in 2006 (Pavlenko et al., 2007). During the long-lasting tail of the late stage
of the outburst binary shown the two-humped or four-humped profile of the
orbital light modulation. The amplitude of orbital light curve decreased while
the mean brightness decreased, more over that occurred 10 times faster
during the fast outburst decline in respect to the late quiet state of slow
outburst fading. There were no white dwarf pulsations detected neither 1 - 1.5
months prior to the outburst nor in 1.5 - 2 months after the 2006 outburst in
this system. However the strong non-radial pulsations with period 12.6 minutes
and mean amplitude of 0.05^m were first detected in V band with 2.6-m Shajn
mirror telescope of the Crimean astrophysical observatory in ~ 8 months after
the outburst. The evolution of pulsations over two years in 2006 - 2008 is
considered. It is supposed that pulsations first appeared when the cooling
white dwarf (after the outburst) entered the instability strip although the
possibility of temporary lack of pulsations at some occasions also could not be
excluded.Comment: Submitted to Proceedings of 16th European White Dwarf Workshop
(EUROWD08
PAMELA, DAMA, INTEGRAL and Signatures of Metastable Excited WIMPs
Models of dark matter with ~ GeV scale force mediators provide attractive
explanations of many high energy anomalies, including PAMELA, ATIC, and the
WMAP haze. At the same time, by exploiting the ~ MeV scale excited states that
are automatically present in such theories, these models naturally explain the
DAMA/LIBRA and INTEGRAL signals through the inelastic dark matter (iDM) and
exciting dark matter (XDM) scenarios, respectively. Interestingly, with only
weak kinetic mixing to hypercharge to mediate decays, the lifetime of excited
states with delta < 2 m_e is longer than the age of the universe. The
fractional relic abundance of these excited states depends on the temperature
of kinetic decoupling, but can be appreciable. There could easily be other
mechanisms for rapid decay, but the consequences of such long-lived states are
intriguing. We find that CDMS constrains the fractional relic population of
~100 keV states to be <~ 10^-2, for a 1 TeV WIMP with sigma_n = 10^-40 cm^2.
Upcoming searches at CDMS, as well as xenon, silicon, and argon targets, can
push this limit significantly lower. We also consider the possibility that the
DAMA excitation occurs from a metastable state into the XDM state, which decays
via e+e- emission, which allows lighter states to explain the INTEGRAL signal
due to the small kinetic energies required. Such models yield dramatic signals
from down-scattering, with spectra peaking at high energies, sometimes as high
as ~1 MeV, well outside the usual search windows. Such signals would be visible
at future Ar and Si experiments, and may be visible at Ge and Xe experiments.
We also consider other XDM models involving ~ 500 keV metastable states, and
find they can allow lighter WIMPs to explain INTEGRAL as well.Comment: 22 pages, 7 figure
Recommended from our members
Nanomolar-potency 'co-potentiator' therapy for cystic fibrosis caused by a defined subset of minimal function CFTR mutants.
Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of 'co-potentiators' (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC50 down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed 'Class II potentiator') was used with a classical potentiator ('Class I potentiator') such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR
A photometricity and extinction monitor at the Apache Point Observatory
An unsupervised software ``robot'' that automatically and robustly reduces
and analyzes CCD observations of photometric standard stars is described. The
robot measures extinction coefficients and other photometric parameters in real
time and, more carefully, on the next day. It also reduces and analyzes data
from an all-sky camera to detect clouds; photometric data taken
during cloudy periods are automatically rejected. The robot reports its
findings back to observers and data analysts via the World-Wide Web. It can be
used to assess photometricity, and to build data on site conditions. The
robot's automated and uniform site monitoring represents a minimum standard for
any observing site with queue scheduling, a public data archive, or likely
participation in any future National Virtual Observatory.Comment: accepted for publication in A
Probing Cosmic Strings with Satellite CMB measurements
We study the problem of searching for cosmic string signal patterns in the
present high resolution and high sensitivity observations of the Cosmic
Microwave Background (CMB). This article discusses a technique capable of
recognizing Kaiser-Stebbins effect signatures in total intensity anisotropy
maps, and shows that the biggest factor that produces confusion is represented
by the acoustic oscillation features of the scale comparable to the size of
horizon at recombination. Simulations show that the distribution of null
signals for pure Gaussian maps converges to a distribution, with
detectability threshold corresponding to a string induced step signal with an
amplitude of about 100 \muK which corresponds to a limit of roughly . We study the statistics of spurious detections caused by
extra-Galactic and Galactic foregrounds. For diffuse Galactic foregrounds,
which represents the dominant source of contamination, we derive sky masks
outlining the available region of the sky where the Galactic confusion is
sub-dominant, specializing our analysis to the case represented by the
frequency coverage and nominal sensitivity and resolution of the Planck
experiment.Comment: 14 pages, 3 figures, to be published in JCA
Foreground removal from WMAP 7yr polarization maps using an MLP neural network
One of the fundamental problems in extracting the cosmic microwave background
signal (CMB) from millimeter/submillimeter observations is the pollution by
emission from the Milky Way: synchrotron, free-free, and thermal dust emission.
To extract the fundamental cosmological parameters from CMB signal, it is
mandatory to minimize this pollution since it will create systematic errors in
the CMB power spectra. In previous investigations, it has been demonstrated
that the neural network method provide high quality CMB maps from temperature
data. Here the analysis is extended to polarization maps. As a concrete
example, the WMAP 7-year polarization data, the most reliable determination of
the polarization properties of the CMB, has been analysed. The analysis has
adopted the frequency maps, noise models, window functions and the foreground
models as provided by the WMAP Team, and no auxiliary data is included. Within
this framework it is demonstrated that the network can extract the CMB
polarization signal with no sign of pollution by the polarized foregrounds. The
errors in the derived polarization power spectra are improved compared to the
errors derived by the WMAP Team.Comment: Accepted for publication in Astrophysics & Space Scienc
ARCADE 2 Observations of Galactic Radio Emission
We use absolutely calibrated data from the ARCADE 2 flight in July 2006 to
model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure
in the data is consistent with a superposition of free-free and synchrotron
emission. Emission with spatial morphology traced by the Haslam 408 MHz survey
has spectral index beta_synch = -2.5 +/- 0.1, with free-free emission
contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest
ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the
polar caps using either a simple plane-parallel model with csc|b| dependence or
a model of high-latitude radio emission traced by the COBE/FIRAS map of CII
emission. Both methods are consistent with a single power-law over the
frequency range 22 MHz to 10 GHz, with total Galactic emission towards the
north polar cap T_Gal = 0.498 +/- 0.028 K and spectral index beta = -2.55 +/-
0.03 at reference frequency 1 GHz. The well calibrated ARCADE 2 maps provide a
new test for spinning dust emission, based on the integrated intensity of
emission from the Galactic plane instead of cross-correlations with the thermal
dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is
fainter than predicted by models without spinning dust, and is consistent with
spinning dust contributing 0.4 +/- 0.1 of the Galactic plane emission at 22
GHz.Comment: 10 poges, 9 figures. Submitted to The Astrophysical Journa
Proximity Effects and Nonequilibrium Superconductivity in Transition-Edge Sensors
We have recently shown that normal-metal/superconductor (N/S) bilayer TESs
(superconducting Transition-Edge Sensors) exhibit weak-link behavior.1 Here we
extend our understanding to include TESs with added noise-mitigating
normal-metal structures (N structures). We find TESs with added Au structures
also exhibit weak-link behavior as evidenced by exponential temperature
dependence of the critical current and Josephson-like oscillations of the
critical current with applied magnetic field. We explain our results in terms
of an effect converse to the longitudinal proximity effect (LoPE)1, the lateral
inverse proximity effect (LaiPE), for which the order parameter in the N/S
bilayer is reduced due to the neighboring N structures. Resistance and critical
current measurements are presented as a function of temperature and magnetic
field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130
{\mu}m with and without added N structures. We observe the inverse proximity
effect on the bilayer over in-plane distances many tens of microns and find the
transition shifts to lower temperatures scale approximately as the inverse
square of the in- plane N-structure separation distance, without appreciable
broadening of the transition width. We also present evidence for nonequilbrium
superconductivity and estimate a quasiparticle lifetime of 1.8 \times 10-10 s
for the bilayer. The LoPE model is also used to explain the increased
conductivity at temperatures above the bilayer's steep resistive transition.Comment: 10 pages, 8 figure
- …
