21 research outputs found

    Genetic architecture of human plasma lipidome and its link to cardiovascular disease

    Get PDF
    Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P Peer reviewe

    Genetic susceptibility to acute viral bronchiolitis

    Get PDF
    Abstract Background: Acute viral bronchiolitis is a major cause of infant hospitalizations worldwide. Childhood bronchiolitis is considered a risk factor for asthma, suggesting shared genetic factors and biological pathways. Genetic risk loci may provide new insights into disease pathogenesis. Methods: We conducted a genome-wide association study (GWAS) to examine the genetic contributions to bronchiolitis susceptibility in the FinnGen project data. We analyzed 1,465 infants hospitalized for bronchiolitis <2 years of age and 356,404 individuals without a history of acute lower respiratory infections (LRIs). Results: GWAS identified associations (p<5×10-8) for variants in gasdermin B (GSDMB) and a missense variant in cadherin-related family member 3 (CDHR3). Children with bronchiolitis in infancy were more likely to develop asthma later in life compared to controls. The two associated loci were previously linked to asthma and susceptibility to wheezing illness by other causative agents than RSV. The identified loci associated with overall bronchiolitis, with larger effects in non-RSV than RSV-induced infection. Conclusion: Our results suggest that genetic variants in CDHR3 and GSDMB modulate susceptibility to bronchiolitis, especially when caused by viruses other than RSV. Severe bronchiolitis in infancy may trigger the development of asthma in genetically susceptible individuals, or it could be a marker of genetic predisposition to asthma.Abstract Background: Acute viral bronchiolitis is a major cause of infant hospitalizations worldwide. Childhood bronchiolitis is considered a risk factor for asthma, suggesting shared genetic factors and biological pathways. Genetic risk loci may provide new insights into disease pathogenesis. Methods: We conducted a genome-wide association study (GWAS) to examine the genetic contributions to bronchiolitis susceptibility in the FinnGen project data. We analyzed 1,465 infants hospitalized for bronchiolitis <2 years of age and 356,404 individuals without a history of acute lower respiratory infections (LRIs). Results: GWAS identified associations (p<5×10-8) for variants in gasdermin B (GSDMB) and a missense variant in cadherin-related family member 3 (CDHR3). Children with bronchiolitis in infancy were more likely to develop asthma later in life compared to controls. The two associated loci were previously linked to asthma and susceptibility to wheezing illness by other causative agents than RSV. The identified loci associated with overall bronchiolitis, with larger effects in non-RSV than RSV-induced infection. Conclusion: Our results suggest that genetic variants in CDHR3 and GSDMB modulate susceptibility to bronchiolitis, especially when caused by viruses other than RSV. Severe bronchiolitis in infancy may trigger the development of asthma in genetically susceptible individuals, or it could be a marker of genetic predisposition to asthma

    Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma

    Get PDF
    Protein-altering variants that are protective against human disease provide in vivo validation of therapeutic targets. Here we use genotyping data from UK Biobank (n = 337,151 unrelated White British individuals) and FinnGen (n = 176,899) to conduct a search for protein-altering variants conferring lower intraocular pressure (IOP) and protection against glaucoma. Through rare protein-altering variant association analysis, we find a missense variant in ANGPTL7 in UK Biobank (rs28991009, p.Gln175His, MAF = 0.8%, genotyped in 82,253 individuals with measured IOP and an independent set of 4,238 glaucoma patients and 250,660 controls) that significantly lowers IOP (beta = -0.53 and -0.67 mmHg for heterozygotes, -3.40 and -2.37 mmHg for homozygotes, P = 5.96 x 10(-9) and 1.07 x 10(-13) for corneal compensated and Goldman-correlated IOP, respectively) and is associated with 34% reduced risk of glaucoma (P = 0.0062). In FinnGen, we identify an ANGPTL7 missense variant at a greater than 50-fold increased frequency in Finland compared with other populations (rs147660927, p.Arg220Cys, MAF Finland = 4.3%), which was genotyped in 6,537 glaucoma patients and 170,362 controls and is associated with a 29% lower glaucoma risk (P = 1.9 x 10(-12) for all glaucoma types and also protection against its subtypes including exfoliation, primary open-angle, and primary angle-closure). We further find three rarer variants in UK Biobank, including a protein-truncating variant, which confer a strong composite lowering of IOP (P = 0.0012 and 0.24 for Goldman-correlated and corneal compensated IOP, respectively), suggesting the protective mechanism likely resides in the loss of interaction or function. Our results support inhibition or down-regulation of ANGPTL7 as a therapeutic strategy for glaucoma. Author summary Glaucoma is a common eye disease that damages the optic nerve. Using intraocular pressure, which is a known modifiable risk factor and predictive measure for glaucoma, genome-wide association studies have identified dozens of genetic variants likely affecting disease risk. However, the identification of potential therapeutic targets from those discoveries has been challenging because the functional consequences and the causal variants of the suggested common variant associations are typically unclear. Here, we present a strategy to scan for rare protein-altering variants, which provides direct insights into the functional consequence and the therapeutic effects, using more than 514,000 individuals with European ancestries in two population cohorts in the UK and Finland. We discover an allelic series of multiple rare ANGPTL7 missense and nonsense variants in UK Biobank that lower intraocular pressure and reduces the risk of glaucoma. We further identify an ANGPTL7 missense variant in FinnGen cohort with more than 50-fold enrichment in the Finnish population that provides protection against glaucoma and its subtypes. Our results highlight the benefits of multi-cohort analysis for the discovery of rare protein-altering variants in common diseases and indicate ANGPTL7 as a therapeutic target for glaucoma.Peer reviewe

    Genomic prediction of alcohol-related morbidity and mortality

    Get PDF
    While polygenic risk scores (PRS) have been shown to predict many diseases and risk factors, the potential of genomic prediction in harm caused by alcohol use has not yet been extensively studied. Here, we built a novel polygenic risk score of 1.1 million variants for alcohol consumption and studied its predictive capacity in 96,499 participants from the FinnGen study and 39,695 participants from prospective cohorts with detailed baseline data and up to 25 years of follow-up time. A 1 SD increase in the PRS was associated with 11.2 g (=0.93 drinks) higher weekly alcohol consumption (CI = 9.85-12.58 g, p = 2.3 x 10(-58)). The PRS was associated with alcohol-related morbidity (4785 incident events) and the risk estimate between the highest and lowest quintiles of the PRS was 1.83 (95% CI = 1.66-2.01, p = 1.6 x 10(-36)). When adjusted for self-reported alcohol consumption, education, marital status, and gamma-glutamyl transferase blood levels in 28,639 participants with comprehensive baseline data from prospective cohorts, the risk estimate between the highest and lowest quintiles of the PRS was 1.58 (CI = 1.26-1.99, p = 8.2 x 10(-5)). The PRS was also associated with all-cause mortality with a risk estimate of 1.33 between the highest and lowest quintiles (CI = 1.20-1.47, p = 4.5 x 10(-8)) in the adjusted model. In conclusion, the PRS for alcohol consumption independently associates for both alcohol-related morbidity and all-cause mortality. Together, these findings underline the importance of heritable factors in alcohol-related health burden while highlighting how measured genetic risk for an important behavioral risk factor can be used to predict related health outcomes.Peer reviewe

    Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers

    Get PDF
    Polygenic risk scores (PRSs) have shown promise in predicting susceptibility to common diseases1,2,3. We estimated their added value in clinical risk prediction of five common diseases, using large-scale biobank data (FinnGen; n = 135,300) and the FINRISK study with clinical risk factors to test genome-wide PRSs for coronary heart disease, type 2 diabetes, atrial fibrillation, breast cancer and prostate cancer. We evaluated the lifetime risk at different PRS levels, and the impact on disease onset and on prediction together with clinical risk scores. Compared to having an average PRS, having a high PRS contributed 21% to 38% higher lifetime risk, and 4 to 9 years earlier disease onset. PRSs improved model discrimination over age and sex in type 2 diabetes, atrial fibrillation, breast cancer and prostate cancer, and over clinical risk in type 2 diabetes, breast cancer and prostate cancer. In all diseases, PRSs improved reclassification over clinical thresholds, with the largest net reclassification improvements for early-onset coronary heart disease, atrial fibrillation and prostate cancer. This study provides evidence for the additional value of PRSs in clinical disease prediction. The practical applications of polygenic risk information for stratified screening or for guiding lifestyle and medical interventions in the clinical setting remain to be defined in further studies.Peer reviewe

    Inframe insertion and splice site variants in MFGE8 associate with protection against coronary atherosclerosis

    Get PDF
    Publisher Copyright: © 2022. The Author(s).A genome-wide association study identifies MFGE8 as protective against coronary atherosclerosis in European and East Asian populations. Cardiovascular diseases are the leading cause of premature death and disability worldwide, with both genetic and environmental determinants. While genome-wide association studies have identified multiple genetic loci associated with cardiovascular diseases, exact genes driving these associations remain mostly uncovered. Due to Finland's population history, many deleterious and high-impact variants are enriched in the Finnish population giving a possibility to find genetic associations for protein-truncating variants that likely tie the association to a gene and that would not be detected elsewhere. In a large Finnish biobank study FinnGen, we identified an association between an inframe insertion rs534125149 in MFGE8 (encoding lactadherin) and protection against coronary atherosclerosis. This variant is highly enriched in Finland, and the protective association was replicated in meta-analysis of BioBank Japan and Estonian biobank. Additionally, we identified a protective association between splice acceptor variant rs201988637 in MFGE8 and coronary atherosclerosis, independent of the rs534125149, with no significant risk-increasing associations. This variant was also associated with lower pulse pressure, pointing towards a function of MFGE8 in arterial aging also in humans in addition to previous evidence in mice. In conclusion, our results suggest that inhibiting the production of lactadherin could lower the risk for coronary heart disease substantially.Peer reviewe

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Daniel Strbian työryhmän jäsenenä Correction; Early Access DOI: 10.1038/s41586-022-05492-5 Early Access: NOV 2022Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.Peer reviewe

    Global Biobank Meta-analysis Initiative : Powering genetic discovery across human disease

    Get PDF
    Funding Information: The work of the contributing biobanks was supported by numerous grants from governmental and charitable bodies. Biobank-specific acknowledgments and more detailed acknowledgments are included in Data S2. Initiative management, S.B.C. J.C. N.J.C. M.J.D. E.E.K. A.R.M. B.M.N. Y.O. A.V.P. D.A.v.H. R.G.W. C.J.W. W.Z. and S.Z.; individual biobank analysis, A.B. Y.B. B.M.B. C.D.B. S.C. T.-T.C. K.C. S.M.D. M.D. G.H.d.B. Y.D. N.J.D. M.-J.F. Y.-C.A.F. S.F. V.L.F. L.G.F. E.R.G. T.R.G. D.H.G. C.R.G. G.G.-A. S.E.G. L.A.G. C.H. J.B.H. W.E.H. H.H. K.H. N.I. A.I. R.J. M. Kurki, J.K. N.K. E.E.K. J.T.K. M. Kanai, T.L. K.L. M.H.L. S.L. K.L. Y.-F.L. V.L.F. R.J.F.L. E.A.L.-M. A.R.-M. S.M.-G. R.M. R.E.M. H.C.M. A.R.M. Y.M. H.M. S.E.M. I.Y.M. B.M. S.M. K.N. S.N. M.A.N.-A. K.N. Y.O. P.P. A.L.-P. A.P. B.P. S.P. M.H.P. D.J.R. N.R. M.D.R. A.R. C.S. S.S. S.S.S. J.A.S. P.S. I.S. T.T. R.T. K.T. J.U. D.A.v.H. B.V. M.V. Y.V. J.M.V. R.G.W. Y.W. S.J.W. B.N.W. K.-H.H.W. M.Z. X.Z. and S.Z.; individual biobank management, N.A. A.A.T. K.M.A.-D. P.A. K.C.B. M. Boehnke, M. Boezen, C.D.B. A.C. Z.C. C.-Y.C. J.C. N.J.C. S.M.D. S.F. Y.-C.A.F. S.F. E.F. T.G. C.R.G. C.J.G. Y.G. H.H. K.A.H. K.H. S.I.I. N.M.J. N.K. E.E.K. J.T.K. C.L. M.H.L. M.T.M.L. L.L. K.L. Y.-F.L. R.J.F.L. J.L. S.M. Y.M. K.M. I.Y.M. Y.O. C.M.O. A.V.P. B.P. D.J.P. D.J.R. M.D.R. S.S. J.W.S. H.S. K.S. T.T. U.T. R.C.T. D.A.v.H. M.V. R.G.W. D.C.W. C.W. J.W. M.Z. X.Z. and S.Z.; study design and interpretation of results, A.B. M. Boehnke, M. Boezen, B.M.B. T.-T.C. C.-Y.C. M.J.D. G.D.S. N.J.D. S.F. M.-J.F. H.K.F. E.R.G. A.G. T.G. J.B.H. J.H. K.H. R.J. M.K. E.E.K. T.K. C.M.L. V.L.F. E.A.L.-M. A.R.M. S.N. B.M.N. C.M.O. J.J.P. B.P. N.R. H.R. J.A.S. I.S. K.T. D.A.v.H. R.G.W. Y.W. D.C.W. S.J.W. C.J.W. B.N.W. J.W. K.-H.H.W. M.Z. H.Z. J.Z. W.Z. X.Z. and S.Z.; drafted and edited the paper, A.B. M. Boehnke, M. Boezen, M.J.D. G.H.d.B. N.J.D. T.R.G. J.B.H. N.I. N.M.J. M.K. V.L.F. S.M. A.R.M. H.M. S.N. B.M.N. C.M.O. B.P. H.R. C.S. J.A.S. J.W.S. K.T. Y.W. D.C.W. C.J.W. K.-H.H.W. H.Z. J.Z. W.Z. and S.Z.; primary meta-analysis and quality control, M.J.D. H.K.F. M. Kanai, J.K. J.T.K. M. Kurki, M.M. B.M.N. C.J.W. K.-H.H.W. and W.Z.; drug discovery: S.N. T.K. K.-H.H.W. W.Z. and Y.O.; fine mapping, M. Kanai, W.Z. M.J.D. and H.K.F.; polygenic risk score, Y.W. S.N. E.A.L.-M. S.K. K.T. K.L. M. Kanai, W.Z. K.W. M.-J.F. L.B. P.A. P.D. V.L.F. R.M. Y.M. B.B. S.S. J.U. E.R.G. N.J.C. I.S. Y.O. A.R.M. and J.B.H.; proteome-wide Mendelian randomization, H.Z. H.R. A.B. G.H. G.D.S. B.M.B. W.Z. B.M.N. T.R.G. and J.Z.; transcriptome-wide association study, A.B. J.B.H. W.Z. J.Z. M. Kanai, B.P. E.R.G. and N.J.C.; asthma, K.T. W.Z. Y.W. M. Kanai, S.N. Y.O. B.M.N. M.J.D. and A.R.M.; heart failure, K.-H.H.W. N.J.D. B.N.W. I.S. S.E.G. J.B.H. N.J.C. M.P. R.J.F.L. M.J.D. B.M.N. W.Z. W.E.H. and C.J.W.; idiopathic pulmonary fibrosis, J.J.P. W.Z. M.J.D. J.T.K. N.J.C. and J.B.H.; primary open-angle glaucoma, V.L.F. A.B. W.Z. Y.W. K.L. M. Kanai, E.A.L.-M. P.S. R.T. X.Z. S.N. S.S. Y.O. N.I. S.M. H.S. I.S. C.W. A.R.M. E.R.G. N.M.J. N.J.C. and J.B.H.; stroke, I.S. K.-H.H.W. W.H. B.N.W. W.Z. J.E.H. A.P. B.B. A.H.S. M.E.G. R.G.W. K.H. C.K. S.Z. M.J.D. B.M.N. and C.J.W.; venous thromboembolism, B.N.W. I.S. K.-H.H.W. B.B. V.L.F. K.T. M.D. B.N. W.Z. J.A.S. and C.J.W. All authors reviewed the manuscript. M.J.D. is a founder of Maze Therapeutics. B.M.N. is a member of the scientific advisory board at Deep Genomics and a consultant for Camp4 Therapeutics, Takeda Pharmaceutical, and Biogen. The spouse of C.J.W. works at Regeneron Pharmaceuticals. C.-Y.C. is employed by Biogen. C.R.G. owns stock in 23andMe, Inc. T.R.G. has received research funding from various pharmaceutical companies to support the application of Mendelian randomization to drug target prioritization. E.E.K. has received speaker fees from Regeneron, Illumina, and 23andMe and is a member of the advisory board for Galateo Bio. R.E.M. has received speaker fees from Illumina and is a scientific advisor to the Epigenetic Clock Development Foundation. G.D.S. has received research funding from various pharmaceutical companies to support the application of Mendelian randomization to drug target prioritization. K.S. and U.T. are employed by deCODE Genetics/Amgen, Inc. J.Z. has received research funding from various pharmaceutical companies to support the application of Mendelian randomization to drug target prioritization. S.M. is a co-founder of and holds stock in Seonix Bio. Publisher Copyright: © 2022Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)—a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.Peer reviewe

    Exome sequencing of Finnish isolates enhances rare-variant association power

    Get PDF
    Exome-sequencing studies have generally been underpowered to identify deleterious alleles with a large effect on complex traits as such alleles are mostly rare. Because the population of northern and eastern Finland has expanded considerably and in isolation following a series of bottlenecks, individuals of these populations have numerous deleterious alleles at a relatively high frequency. Here, using exome sequencing of nearly 20,000 individuals from these regions, we investigate the role of rare coding variants in clinically relevant quantitative cardiometabolic traits. Exome-wide association studies for 64 quantitative traits identified 26 newly associated deleterious alleles. Of these 26 alleles, 19 are either unique to or more than 20 times more frequent in Finnish individuals than in other Europeans and show geographical clustering comparable to Mendelian disease mutations that are characteristic of the Finnish population. We estimate that sequencing studies of populations without this unique history would require hundreds of thousands to millions of participants to achieve comparable association power.Peer reviewe
    corecore