618 research outputs found

    Clostridium perfringens epsilon toxin increases the small intestinal permeability in mice and rats

    Get PDF
    Epsilon toxin is a potent neurotoxin produced by Clostridium perfringens types B and D, an anaerobic bacterium that causes enterotoxaemia in ruminants. In the affected animal, it causes oedema of the lungs and brain by damaging the endothelial cells, inducing physiological and morphological changes. Although it is believed to compromise the intestinal barrier, thus entering the gut vasculature, little is known about the mechanism underlying this process. This study characterizes the effects of epsilon toxin on fluid transport and bioelectrical parameters in the small intestine of mice and rats. The enteropooling and the intestinal loop tests, together with the single-pass perfusion assay and in vitro and ex vivo analysis in Ussing's chamber, were all used in combination with histological and ultrastructural analysis of mice and rat small intestine, challenged with or without C. perfringens epsilon toxin. Luminal epsilon toxin induced a time and concentration dependent intestinal fluid accumulation and fall of the transepithelial resistance. Although no evident histological changes were observed, opening of the mucosa tight junction in combination with apoptotic changes in the lamina propria were seen with transmission electron microscopy. These results indicate that C. perfringens epsilon toxin alters the intestinal permeability, predominantly by opening the mucosa tight junction, increasing its permeability to macromolecules, and inducing further degenerative changes in the lamina propria of the bowel. © 2009 Goldstein et al

    The computation and measurement of residual stresses in laser deposited layers

    Get PDF
    Laser metal forming is an attractive process for rapid prototyping or the rebuilding of worn parts. However, large tensile stress may arise in layers deposited by laser melting of powder. A potential solution is to preheat the substrate before and during deposition of layers to introduce sufficient contraction during cooling in the substrate to modify the residual stress distribution in the deposited layers. To demonstrate the value of this approach, specimens were prepared by depositing stellite F on a stainless steel substrate with and without preheating. Residual stresses were computed by numerical simulation and measured using the crack compliance method. For non-preheated specimens simulation and experiment agreed well and showed that extremely high residual tensile stresses were present in the laser melted material. By contrast, pre-heated specimens show high compressive stresses in the clad material. However, in this case the numerical simulation and experimental measurement showed very different stress distribution. This is attributed to out of plane deformation due to the high compressive stresses which are not permitted in the numerical simulation. A ‘‘strength of materials’’ analysis of the effect of out of plane deformation was used to correct the simulation, Agreement with experimental results was then satisfactory

    Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation

    Get PDF
    Background: The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body: We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions: As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.Frances Corrigan, Kimberley A. Mander, Anna V. Leonard and Robert Vin

    Disrupting astrocyte-neuron lactate transfer persistently reduces conditioned responses to cocaine.

    Get PDF
    A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte-neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine

    Medically Biodegradable Hydrogenated Amorphous Silicon Microspheres

    Full text link
    [EN] Hydrogenated amorphous silicon colloids of low surface area (<5 m(2)/g) are shown to exhibit complete in-vitro biodegradation into orthosilicic acid within 10-15 days at 37 degrees C. When converted into polycrystalline silicon colloids, by high temperature annealing in an inert atmosphere, microparticle solubility is dramatically reduced. The data suggests that amorphous silicon does not require nanoscale porosification for full in-vivo biodegradability. This has significant implications for using a-Si:H coatings for medical implants in general, and orthopedic implants in particular. The high sphericity and biodegradability of submicron particles may also confer advantages with regards to contrast agents for medical imaging.This work has been partially supported by the Spanish CICyT projects, FIS2009-07812, Consolider CSD2007-046, MAT2009-010350 and PROMETEO/2010/043.Shabir, Q.; Pokale, A.; Loni, A.; Johnson, DR.; Canham, L.; Fenollosa Esteve, R.; Tymczenko, MK.... (2011). Medically Biodegradable Hydrogenated Amorphous Silicon Microspheres. Silicon. 3(4):173-176. https://doi.org/10.1007/s12633-011-9097-4S17317634Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2008) J Pharmaceutics 97:632–53Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Adv Drug Deliv Rev 60:1266–77O’Farrell N, Houlton A, Horrocks BR (2006) Int J Nanomedicine 1:451–72Canham LT (1995) Adv Mater 7:1037, PCT patent WO 97/06101,1999Park JH, Gui L, Malzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Nature Mater 8:331–6Cullis AG, Canham LT, Calcott PDJ (1997) J Appl Phys 82:909–66Canham LT, Reeves CR (1996) Mat Res Soc Symp 414:189–90Edell DJ, Toi VV, McNeil VM, Clark LD (1992) IEEE Trans Biomed Eng 39:635–43Fenollosa R, Meseguer F, Tymczenko M (2008) Adv Mater 20:95Fenollosa R, Meseguer F, Tymczenko M, Spanish Patent P200701681, 2007Pell LE, Schricker AD, Mikulec FV, Korgel BA (2004) Langmuir 20:6546Xifré-Perez E, Fenollosa R, Meseguer F (2011) Opt Express 19:3455–63Fenollosa R, Ramiro-Manzano F, Tymczenko M, Meseguer F (2010) J Mater Chem 20:5210Xifré-Pérez E, Domenech JD, Fenollosa R, Muñoz P, Capmany J, Meseguer F (2011) Opt Express 19–4:3185–92Rodriguez I, Fenollosa R, Meseguer F, Cosmetics & Toiletries 2010;42–49Ramiro-Manzano F, Fenollosa R, Xifré-Pérez E, Garín M, Meseguer F (2011) Adv Mater 23:3022–3025. doi: 10.1002/adma.201100986Iler RK (1979) Chemistry of silica: solubility, polymerization, colloid & surface properties & biochemistry. Wiley, New YorkTanaka K, Maruyama E, Shimado T, Okamoto H (1999) Amorphous silicon. Wiley, New York, NYPatterson AL (1939) Phys Rev 56:978–82Canham LT, Reeves CL, King DO, Branfield PJ, Gabb JG, Ward MC (1996) Adv Mater 8:850–2Iler RK In: Chemistry of silica: solubility, polymerization, colloid & surface properties &Biochemistry. Wiley, New York, NYFinnie KS, Waller DJ, Perret FL, Krause-Heuer AM, Lin HQ, Hanna JV, Barbe CJ (2009) J Sol-Gel Technol 49:12–8Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–36Fan D, Akkaraju GR, Couch EF, Canham LT, Coffer JL (2010) Nanoscale 1:354–61Tasciotti E, Godin B, Martinez JO, Chiappini C, Bhavane R, Liu X, Ferrari M (2011) Mol Imaging 10:56–

    Estimating the household secondary attack rate and serial interval of COVID-19 using social media

    Get PDF
    We propose a method to estimate the household secondary attack rate (hSAR) of COVID-19 in the United Kingdom based on activity on the social media platform X, formerly known as Twitter. Conventional methods of hSAR estimation are resource intensive, requiring regular contact tracing of COVID-19 cases. Our proposed framework provides a complementary method that does not rely on conventional contact tracing or laboratory involvement, including the collection, processing, and analysis of biological samples. We use a text classifier to identify reports of people tweeting about themselves and/or members of their household having COVID-19 infections. A probabilistic analysis is then performed to estimate the hSAR based on the number of self or household, and self and household tweets of COVID-19 infection. The analysis includes adjustments for a reluctance of Twitter users to tweet about household members, and the possibility that the secondary infection was not acquired within the household. Experimental results for the UK, both monthly and weekly, are reported for the period from January 2020 to February 2022. Our results agree with previously reported hSAR estimates, varying with the primary variants of concern, e.g. delta and omicron. The serial interval (SI) is based on the time between the two tweets that indicate a primary and secondary infection. Experimental results, though larger than the consensus, are qualitatively similar. The estimation of hSAR and SI using social media data constitutes a new tool that may help in characterizing, forecasting and managing outbreaks and pandemics in a faster, affordable, and more efficient manner

    DNA Damage Responses in Human Induced Pluripotent Stem Cells and Embryonic Stem Cells

    Get PDF
    BACKGROUND: Induced pluripotent stem (iPS) cells have the capability to undergo self-renewal and differentiation into all somatic cell types. Since they can be produced through somatic cell reprogramming, which uses a defined set of transcription factors, iPS cells represent important sources of patient-specific cells for clinical applications. However, before these cells can be used in therapeutic designs, it is essential to understand their genetic stability.\ud \ud METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe DNA damage responses in human iPS cells. We observe hypersensitivity to DNA damaging agents resulting in rapid induction of apoptosis after γ-irradiation. Expression of pluripotency factors does not appear to be diminished after irradiation in iPS cells. Following irradiation, iPS cells activate checkpoint signaling, evidenced by phosphorylation of ATM, NBS1, CHEK2, and TP53, localization of ATM to the double strand breaks (DSB), and localization of TP53 to the nucleus of NANOG-positive cells. We demonstrate that iPS cells temporary arrest cell cycle progression in the G(2) phase of the cell cycle, displaying a lack of the G(1)/S cell cycle arrest similar to human embryonic stem (ES) cells. Furthermore, both cell types remove DSB within six hours of γ-irradiation, form RAD51 foci and exhibit sister chromatid exchanges suggesting homologous recombination repair. Finally, we report elevated expression of genes involved in DNA damage signaling, checkpoint function, and repair of various types of DNA lesions in ES and iPS cells relative to their differentiated counterparts.\ud \ud CONCLUSIONS/SIGNIFICANCE: High degrees of similarity in DNA damage responses between ES and iPS cells were found. Even though reprogramming did not alter checkpoint signaling following DNA damage, dramatic changes in cell cycle structure, including a high percentage of cells in the S phase, increased radiosensitivity and loss of DNA damage-induced G(1)/S cell cycle arrest, were observed in stem cells generated by induced pluripotency.\ud \u
    corecore