4,446 research outputs found

    Solution of two-center time-dependent Dirac equation in spherical coordinates: Application of the multipole expansion of the electron-nuclei interaction

    Full text link
    A non-perturbative approach to the solution of the time-dependent, two-center Dirac equation is presented with a special emphasis on the proper treatment of the potential of the nuclei. In order to account for the full multipole expansion of this potential, we express eigenfunctions of the two-center Hamiltonian in terms of well-known solutions of the "monopole" problem that employs solely the spherically-symmetric part of the interaction. When combined with the coupled-channel method, such a wavefunction-expansion technique allows for an accurate description of the electron dynamics in the field of moving ions for a wide range of internuclear distances. To illustrate the applicability of the proposed approach, the probabilities of the K- as well as L- shell ionization of hydrogen-like ions in the course of nuclear alpha-decay and slow ion-ion collisions have been calculated

    Evidence against correlations between nuclear decay rates and Earth-Sun distance

    Get PDF
    We have reexamined our previously published data to search for evidence of correlations between the rates for the alpha, beta-minus, beta-plus, and electron-capture decays of 22Na, 44Ti, 108Agm, 121Snm, 133Ba, and 241Am and the Earth-Sun distance. We find no evidence for such correlations and set limits on the possible amplitudes of such correlations substantially smaller than those observed in previous experiments

    Dynamical symmetry of isobaric analog 0+ states in medium mass nuclei

    Get PDF
    An algebraic sp(4) shell model is introduced to achieve a deeper understanding and interpretation of the properties of pairing-governed 0+ states in medium mass atomic nuclei. The theory, which embodies the simplicity of a dynamical symmetry approach to nuclear structure, is shown to reproduce the excitation spectra and fine structure effects driven by proton-neutron interactions and isovector pairing correlations across a broad range of nuclei.Comment: 7 pages, 5 figure

    Development of space-syaple thermal-control coatings triannual report, jan. 20 - may 20, 1965

    Get PDF
    Development of stable thermal control coatings with low solar absorptance to infrared emittance rati

    Ground state magnetic dipole moment of 35K

    Full text link
    The ground state magnetic moment of 35K has been measured using the technique of nuclear magnetic resonance on beta-emitting nuclei. The short-lived 35K nuclei were produced following the reaction of a 36Ar primary beam of energy 150 MeV/nucleon incident on a Be target. The spin polarization of the 35K nuclei produced at 2 degrees relative to the normal primary beam axis was confirmed. Together with the mirror nucleus 35S, the measurement represents the heaviest T = 3/2 mirror pair for which the spin expectation value has been obtained. A linear behavior of gp vs. gn has been demonstrated for the T = 3/2 known mirror moments and the slope and intercept are consistent with the previous analysis of T = 1/2 mirror pairs.Comment: 14 pages, 5 figure

    Model-independent Limits from Spin-dependent WIMP Dark Matter Experiments

    Full text link
    Spin-dependent WIMP searches have traditionally presented results within an odd group approximation and by suppressing one of the spin-dependent interaction cross sections. We here elaborate on a model-independent analysis in which spin-dependent interactions with both protons and neutrons are simultaneously considered. Within this approach, equivalent current limits on the WIMP-nucleon interaction at WIMP mass of 50 GeV/c2^{2} are either σp0.7\sigma_{p}\leq0.7 pb, σn0.2\sigma_{n}\leq0.2 pb or ap0.4|a_{p}|\leq0.4, an0.7|a_{n}|\leq0.7 depending on the choice of cross section or coupling strength representation. These limits become less restrictive for either larger or smaller masses; they are less restrictive than those from the traditional odd group approximation regardless of WIMP mass. Combination of experimental results are seen to produce significantly more restrictive limits than those obtained from any single experiment. Experiments traditionally considered spin-independent are moreover found to severely limit the spin-dependent phase space. The extension of this analysis to the case of positive signal experiments is explored.Comment: 12 pages, 12 figures, submitted to Phys. Rev.

    Heavy Superheated Droplet Detectors as a Probe of Spin-independent WIMP Dark Matter Existence

    Full text link
    At present, application of Superheated Droplet Detectors (SDDs) in WIMP dark matter searches has been limited to the spin-dependent sector, owing to the general use of fluorinated refrigerants which have high spin sensitivity. Given their recent demonstration of a significant constraint capability with relatively small exposures and the relative economy of the technique, we consider the potential impact of heavy versions of such devices on the spin-independent sector. Limits obtainable from a CF3I\mathrm{CF_{3}I}-loaded SDD are estimated on the basis of the radiopurity levels and backgrounds already achieved by the SIMPLE and PICASSO experiments. With 34 kgd exposure, equivalent to the current CDMS, such a device may already probe to below 106^{-6} pb in the spin-independent cross section.Comment: 9 pages, 4 figures, accepted Phys. Rev.

    Dynamical approach to heavy-ion induced fission using actinide target nuclei at energies around the Coulomb barrier

    Full text link
    In order to describe heavy-ion fusion reactions around the Coulomb barrier with an actinide target nucleus, we propose a model which combines the coupled-channels approach and a fluctuation-dissipation model for dynamical calculations. This model takes into account couplings to the collective states of the interacting nuclei in the penetration of the Coulomb barrier and the subsequent dynamical evolution of a nuclear shape from the contact configuration. In the fluctuation-dissipation model with a Langevin equation, the effect of nuclear orientation at the initial impact on the prolately deformed target nucleus is considered. Fusion-fission, quasi-fission and deep quasi-fission are separated as different Langevin trajectories on the potential energy surface. Using this model, we analyze the experimental data for the mass distribution of fission fragments (MDFF) in the reactions of 34,36^{34,36}S+238^{238}U and 30^{30}Si+238^{238}U at several incident energies around the Coulomb barrier. We find that the time scale in the quasi-fission as well as the deformation of fission fragments at the scission point are different between the 30^{30}Si+238^{238}U and 36^{36}S+238^{238}U systems, causing different mass asymmetries of the quasi-fission.Comment: 11 figure

    Perception of pain as a result of orthodontic treatment with fixed appliances

    Get PDF
    The aims of this study were to investigate the intensity, location and duration of patients' discomfort following insertion of orthodontic appliances, and to examine for interactions between patient age, gender, appliance type and the perception of pain. After insertion of orthodontic appliances, 170 patients received eight questionnaires, one they completed and returned after 4 h, then one daily for 7 days. The respondents' ages ranged from 8-53 years (median age 13 years 7 months); 45 per cent were male and 55 per cent female. Of the patients, 65 per cent reported pain after 4 h and 95 per cent after 24 h. After 7 days, 25 per cent of the patients still reported discomfort. Patients' pain intensity scores were significantly higher for the anterior than for the posterior teeth. On day 1, 16 per cent took analgesics and 18 per cent reported being awakened the first night. Comparing a 2 × 4 appliance, a full appliance in one arch and in both arches, no statistical differences were found for reported pain frequency, general intensity of pain, pain at the teeth, discomfort when biting and chewing and analgesic consumption. The perception of general pain intensity, analgesic consumption, pain when eating and the influence of discomfort on daily life were all significantly greater in girls than in boys. Patients younger than 13 years reported pain significantly less frequently than the older patients. The highest frequency of pain was found in the group of 13-16 year olds. The pain intensity did not differ among the age group
    corecore