244 research outputs found

    Optical absorption and activated transport in polaronic systems

    Full text link
    We present exact results for the optical response in the one-dimensional Holstein model. In particular, by means of a refined kernel polynomial method, we calculate the ac and dc electrical conductivities at finite temperatures for a wide parameter range of electron phonon interaction. We analyze the deviations from the results of standard small polaron theory in the intermediate coupling regime and discuss non-adiabaticity effects in detail.Comment: 7 pages, 8 figure

    Nanofabricated media with negative permeability at visible frequencies

    Full text link
    We report a nanofabricated medium made of electromagnetically coupled pairs of gold dots with geometry carefully designed at a 10-nm level. The medium exhibits strong magnetic response at visible-light frequencies, including bands with negative \mu. The magnetism arises due to the excitation of quadrupole plasmon resonances. Our approach shows for the first time the feasibility of magnetism at optical frequencies and paves a way towards magnetic and left-handed components for visible optics.Comment: 16 pages, 4 figures. submitted to Nature on 1 April 200

    Stochastic Green's function approach to disordered systems

    Full text link
    Based on distributions of local Green's functions we present a stochastic approach to disordered systems. Specifically we address Anderson localisation and cluster effects in binary alloys. Taking Anderson localisation of Holstein polarons as an example we discuss how this stochastic approach can be used for the investigation of interacting disordered systems.Comment: 12 pages, 7 figures, conference proceedings: Progress in Nonequilibrium Green's Functions III, 22-26 August 2005, University of Kiel, German

    Optical models of the molecular atmosphere

    Get PDF
    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered

    Electric Field Effect in Atomically Thin Carbon Films

    Full text link
    We report a naturally-occurring two-dimensional material (graphene that can be viewed as a gigantic flat fullerene molecule, describe its electronic properties and demonstrate all-metallic field-effect transistor, which uniquely exhibits ballistic transport at submicron distances even at room temperature

    Spatiotemporal evolution of polaronic states in finite quantum systems

    Full text link
    We study the quantum dynamics of small polaron formation and polaron transport through finite quantum structures in the framework of the one-dimensional Holstein model with site-dependent potentials and interactions. Combining Lanczos diagonalization with Chebyshev moment expansion of the time evolution operator, we determine how different initial states, representing stationary ground states or injected wave packets, after an electron-phonon interaction quench, develop in real space and time. Thereby, the full quantum nature and dynamics of electrons and phonons is preserved. We find that the decay out of the initial state sensitively depends on the energy and momentum of the incoming particle, the electron-phonon coupling strength, and the phonon frequency, whereupon bound polaron-phonon excited states may emerge in the strong-coupling regime. The tunneling of a Holstein polaron through a quantum wall/dot is generally accompanied by strong phonon number fluctuations due to phonon emission and re-absorption processes.Comment: 13 pages, 15 figures, final versio

    Two Dimensional Electron and Hole Gases at the Surface of Graphite

    Full text link
    We report high-quality two-dimensional (2D) electron and hole gases induced at the surface of graphite by the electric field effect. The 2D carriers reside within a few near-surface atomic layers and exhibit mobilities up to 15,000 and 60,000 cm2/Vs at room and liquid-helium temperatures, respectively. The mobilities imply ballistic transport at micron scale. Pronounced Shubnikov-de Haas oscillations reveal the existence of two types of carries in both 2D electron and hole gases.Comment: related to cond-mat/0410631 where preliminary data for this experimental system were reporte

    Polarons and slow quantum phonons

    Full text link
    We describe the formation and properties of Holstein polarons in the entire parameter regime. Our presentation focuses on the polaron mass and radius, which we obtain with an improved numerical technique. It is based on the combination of variational exact diagonalization with an improved construction of phonon states, providing results even for the strong coupling adiabatic regime. In particular we can describe the formation of large and heavy adiabatic polarons. A comparison of the polaron mass for the one and three dimensional situation explains how the different properties in the static oscillator limit determine the behavior in the adiabatic regime. The transport properties of large and small polarons are characterized by the f-sum rule and the optical conductivity. Our calculations are approximation-free and have negligible numerical error. This allows us to give a conclusive and impartial description of polaron formation. We finally discuss the implications of our results for situations beyond the Holstein model.Comment: Final version, 10 pages, 10 figure

    Momentum average approximation for models with boson-modulated hopping: Role of closed loops in the dynamical generation of a finite quasiparticle mass

    Full text link
    We generalize the momentum average approximation to study the properties of single polarons in models with boson affected hopping, where the fermion-boson scattering depends explicitly on both the fermion's and the boson's momentum. As a specific example, we investigate the Edwards fermion-boson model in both one and two dimensions. In one dimension, this allows us to compare our results with exact diagonalization results, to validate the accuracy of our approximation. The generalization to two-dimensional lattices allows us to calculate the polaron's quasiparticle weight and dispersion throughout the Brillouin zone and to demonstrate the importance of Trugman loops in generating a finite effective mass even when the free fermion has an infinite mass.Comment: 15 pages, 14 figure
    corecore