3,597 research outputs found
Random Field and Random Anisotropy Effects in Defect-Free Three-Dimensional XY Models
Monte Carlo simulations have been used to study a vortex-free XY ferromagnet
with a random field or a random anisotropy on simple cubic lattices. In the
random field case, which can be related to a charge-density wave pinned by
random point defects, it is found that long-range order is destroyed even for
weak randomness. In the random anisotropy case, which can be related to a
randomly pinned spin-density wave, the long-range order is not destroyed and
the correlation length is finite. In both cases there are many local minima of
the free energy separated by high entropy barriers. Our results for the random
field case are consistent with the existence of a Bragg glass phase of the type
discussed by Emig, Bogner and Nattermann.Comment: 10 pages, including 2 figures, extensively revise
Regularisation, the BV method, and the antibracket cohomology
We review the Lagrangian Batalin--Vilkovisky method for gauge theories. This
includes gauge fixing, quantisation and regularisation. We emphasize the role
of cohomology of the antibracket operation. Our main example is gravity,
for which we also discuss the solutions for the cohomology in the space of
local integrals. This leads to the most general form for the action, for
anomalies and for background charges.Comment: 12 pages, LaTeX, Preprint-KUL-TF-94/2
Formation of laser plasma channels in a stationary gas
The formation of plasma channels with nonuniformity of about +- 3.5% has been
demonstrated. The channels had a density of 1.2x10^19 cm-3 with a radius of 15
um and with length >= 2.5 mm. The channels were formed by 0.3 J, 100 ps laser
pulses in a nonflowing gas, contained in a cylindrical chamber. The laser beam
passed through the chamber along its axis via pinholes in the chamber walls. A
plasma channel with an electron density on the order of 10^18 - 10^19 cm-3 was
formed in pure He, N2, Ar, and Xe. A uniform channel forms at proper time
delays and in optimal pressure ranges, which depend on the sort of gas. The
influence of the interaction of the laser beam with the gas leaking out of the
chamber through the pinholes was found insignificant. However, the formation of
an ablative plasma on the walls of the pinholes by the wings of the radial
profile of the laser beam plays an important role in the plasma channel
formation and its uniformity. A low current glow discharge initiated in the
chamber slightly improves the uniformity of the plasma channel, while a high
current arc discharge leads to the formation of overdense plasma near the front
pinhole and further refraction of the laser beam. The obtained results show the
feasibility of creating uniform plasma channels in non-flowing gas targets.Comment: 15 pages, 7 figures, submitted to Physics of Plasma
Effect of Anode Dielectric Coating on Hall Thruster Operation
An interesting phenomenon observed in the near-anode region of a Hall
thruster is that the anode fall changes from positive to negative upon removal
of the dielectric coating, which is produced on the anode surface during the
normal course of Hall thruster operation. The anode fall might affect the
thruster lifetime and acceleration efficiency. The effect of the anode coating
on the anode fall is studied experimentally using both biased and emissive
probes. Measurements of discharge current oscillations indicate that thruster
operation is more stable with the coated anode
Ground-State and Domain-Wall Energies in the Spin-Glass Region of the 2D Random-Bond Ising Model
The statistics of the ground-state and domain-wall energies for the
two-dimensional random-bond Ising model on square lattices with independent,
identically distributed bonds of probability of and of
are studied. We are able to consider large samples of up to
spins by using sophisticated matching algorithms. We study
systems, but we also consider samples, for different aspect ratios
. We find that the scaling behavior of the ground-state energy and
its sample-to-sample fluctuations inside the spin-glass region () are characterized by simple scaling functions. In particular, the
fluctuations exhibit a cusp-like singularity at . Inside the spin-glass
region the average domain-wall energy converges to a finite nonzero value as
the sample size becomes infinite, holding fixed. Here, large finite-size
effects are visible, which can be explained for all by a single exponent
, provided higher-order corrections to scaling are included.
Finally, we confirm the validity of aspect-ratio scaling for : the
distribution of the domain-wall energies converges to a Gaussian for ,
although the domain walls of neighboring subsystems of size are
not independent.Comment: 11 pages with 15 figures, extensively revise
Therapieresistente systemische Sarkoidose mit kutaner Manifestation : erfolgreiche Behandlung mit einer Kombination von Infliximab, Azathioprin und neiderdosierten Steroiden
Nonlinear dispersion of stationary waves in collisionless plasmas
A nonlinear dispersion of a general stationary wave in collisionless plasma
is obtained in a non-differential form from a single-particle
oscillation-center Hamiltonian. For electrostatic oscillations in nonmagnetized
plasma, considered as a paradigmatic example, the linear dielectric function is
generalized, and the trapped particle contribution to the wave frequency shift
is found analytically as a function of the wave amplitude .
Smooth distributions yield , as usual. However,
beam-like distributions of trapped electrons result in different power laws, or
even a logarithmic nonlinearity, which are derived as asymptotic limits of the
same dispersion relation
- …
