1,057 research outputs found
Towards the use of the most massive black hole candidates in AGN to test the Kerr paradigm
The super-massive objects in galactic nuclei are thought to be the Kerr black
holes predicted by General Relativity, although a definite proof of their
actual nature is still lacking. The most massive objects in AGN () seem to have a high radiative efficiency () and a
moderate mass accretion rate (). The high
radiative efficiency could suggest they are very rapidly-rotating black holes.
The moderate luminosity could indicate that their accretion disk is
geometrically thin. If so, these objects could be excellent candidates to test
the Kerr black hole hypothesis. An accurate measurement of the radiative
efficiency of an individual AGN may probe the geometry of the space-time around
the black hole candidate with a precision comparable to the one achievable with
future space-based gravitational-wave detectors like LISA. A robust evidence of
the existence of a black hole candidate with and accreting from a
thin disk may be interpreted as an indication of new physics. For the time
being, there are several issues to address before using AGN to test the Kerr
paradigm, but the approach seems to be promising and capable of providing
interesting results before the advent of gravitational wave astronomy.Comment: 12 pages, 6 figures. v2: some typos correcte
Quantized Casimir Force
We investigate the Casimir effect between two-dimensional electron systems
driven to the quantum Hall regime by a strong perpendicular magnetic field. In
the large separation (d) limit where retardation effects are essential we find
i) that the Casimir force is quantized in units of 3\hbar c \alpha^2/(8\pi^2
d^4), and ii) that the force is repulsive for mirrors with same type of
carrier, and attractive for mirrors with opposite types of carrier. The sign of
the Casimir force is therefore electrically tunable in ambipolar materials like
graphene. The Casimir force is suppressed when one mirror is a charge-neutral
graphene system in a filling factor \nu=0 quantum Hall state.Comment: 4.2 page
Geometric Random Inner Products: A New Family of Tests for Random Number Generators
We present a new computational scheme, GRIP (Geometric Random Inner
Products), for testing the quality of random number generators. The GRIP
formalism utilizes geometric probability techniques to calculate the average
scalar products of random vectors generated in geometric objects, such as
circles and spheres. We show that these average scalar products define a family
of geometric constants which can be used to evaluate the quality of random
number generators. We explicitly apply the GRIP tests to several random number
generators frequently used in Monte Carlo simulations, and demonstrate a new
statistical property for good random number generators
Super-soft symmetry energy encountering non-Newtonian gravity in neutron stars
Considering the non-Newtonian gravity proposed in the grand unification
theories, we show that the stability and observed global properties of neutron
stars can not rule out the super-soft nuclear symmetry energies at
supra-saturation densities. The degree of possible violation of the
Inverse-Square-Law of gravity in neutron stars is estimated using an Equation
of State (EOS) of neutron-rich nuclear matter consistent with the available
terrestrial laboratory data.Comment: Version accepted by Physical Review Letter
Constraints on non-Newtonian gravity from the Casimir force measurements between two crossed cylinders
Constraints on the Yukawa-type corrections to Newtonian gravitational law are
obtained resulting from the measurement of the Casimir force between two
crossed cylinders. The new constraints are stronger than those previously
derived in the interaction range between 1.5 nm and 11 nm. The maximal
strengthening in 300 times is achieved at 4.26 nm. Possible applications of the
obtained results to the elementary particle physics are discussed.Comment: An error in the text and in the figure had been corrected. To appear
in Phys. Rev.
Neutrino Dark Energy and Moduli Stabilization in a BPS Braneworld Scenario
A braneworld model for neutrino Dark Energy (DE) is presented. We consider a
five dimensional two-branes set up with a bulk scalar field motivated by
supergravity. Its low-energy effective theory is derived with a moduli space
approximation (MSA). The position of the two branes are parametrized by two
scalar degrees of freedom (moduli). After detuning the brane tensions a
classical potential for the moduli is generated. This potential is unstable for
dS branes and we suggest to consider as a stabilizing contribution the Casimir
energy of bulk fields. In particular we add a massive spinor (neutrino) field
in the bulk and then evaluate the Casimir contribution of the bulk neutrino
with the help of zeta function regularization techniques. We construct an
explicit form of the 4D neutrino mass as function of the two moduli. To recover
the correct DE scale for the moduli potential the usual cosmological constant
fine-tuning is necessary, but, once accepted, this model suggests a stronger
connection between DE and neutrino physics.Comment: 26 pages, 1 EPS figur
Chameleonic dilaton, nonequivalent frames, and the cosmological constant problem in quantum string theory
The chameleonic behaviour of the String theory dilaton is suggested. Some of
the possible consequences of the chameleonic string dilaton are analyzed in
detail. In particular, (1) we suggest a new stringy solution to the
cosmological constant problem and (2) we point out the non-equivalence of
different conformal frames at the quantum level. In order to obtain these
results, we start taking into account the (strong coupling) string loop
expansion in the string frame (S-frame), therefore the so-called form factors
are present in the effective action. The correct Dark Energy scale is recovered
in the Einstein frame (E-frame) without unnatural fine-tunings and this result
is robust against all quantum corrections, granted that we assume a proper
structure of the S-frame form factors in the strong coupling regime. At this
stage, the possibility still exists that a certain amount of fine-tuning may be
required to satisfy some phenomenological constraints. Moreover in the E-frame,
in our proposal, all the interactions are switched off on cosmological length
scales (i.e. the theory is IR-free), while higher derivative gravitational
terms might be present locally (on short distances) and it remains to be seen
whether these facts clash with phenomenology. A detailed phenomenological
analysis is definitely necessary to clarify these points
Post-Einsteinian tests of gravitation
Einstein gravitation theory can be extended by preserving its geometrical
nature but changing the relation between curvature and energy-momentum tensors.
This change accounts for radiative corrections, replacing the Newton
gravitation constant by two running couplings which depend on scale and differ
in the two sectors of traceless and traced tensors. The metric and curvature
tensors in the field of the Sun, which were obtained in previous papers within
a linearized approximation, are then calculated without this restriction.
Modifications of gravitational effects on geodesics are then studied, allowing
one to explore phenomenological consequences of extensions lying in the
vicinity of general relativity. Some of these extended theories are able to
account for the Pioneer anomaly while remaining compatible with tests involving
the motion of planets. The PPN Ansatz corresponds to peculiar extensions of
general relativity which do not have the ability to meet this compatibility
challenge.Comment: 19 pages Corrected typo
Improved tests of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements
We report new constraints on extra-dimensional models and other physics
beyond the Standard Model based on measurements of the Casimir force between
two dissimilar metals for separations in the range 0.2--1.2 m. The Casimir
force between an Au-coated sphere and a Cu-coated plate of a
microelectromechanical torsional oscillator was measured statically with an
absolute error of 0.3 pN. In addition, the Casimir pressure between two
parallel plates was determined dynamically with an absolute error of mPa. Within the limits of experimental and theoretical errors, the results
are in agreement with a theory that takes into account the finite conductivity
and roughness of the two metals. The level of agreement between experiment and
theory was then used to set limits on the predictions of extra-dimensional
physics and thermal quantum field theory. It is shown that two theoretical
approaches to the thermal Casimir force which predict effects linear in
temperture are ruled out by these experiments. Finally, constraints on Yukawa
corrections to Newton's law of gravity are strengthened by more than an order
of magnitude in the range 56 nm to 330 nm.Comment: Revtex 4, 35 pages, 14 figures in .gif format, accepted for
publication in Phys. Rev.
The Casimir Problem of Spherical Dielectrics: Numerical Evaluation for General Permittivities
The Casimir mutual free energy F for a system of two dielectric concentric
nonmagnetic spherical bodies is calculated, at arbitrary temperatures. The
present paper is a continuation of an earlier investigation [Phys. Rev. E {\bf
63}, 051101 (2001)], in which F was evaluated in full only for the case of
ideal metals (refractive index n=infinity). Here, analogous results are
presented for dielectrics, for some chosen values of n. Our basic calculational
method stems from quantum statistical mechanics. The Debye expansions for the
Riccati-Bessel functions when carried out to a high order are found to be very
useful in practice (thereby overflow/underflow problems are easily avoided),
and also to give accurate results even for the lowest values of l down to l=1.
Another virtue of the Debye expansions is that the limiting case of metals
becomes quite amenable to an analytical treatment in spherical geometry. We
first discuss the zero-frequency TE mode problem from a mathematical viewpoint
and then, as a physical input, invoke the actual dispersion relations. The
result of our analysis, based upon the adoption of the Drude dispersion
relation at low frequencies, is that the zero-frequency TE mode does not
contribute for a real metal. Accordingly, F turns out in this case to be only
one half of the conventional value at high temperatures. The applicability of
the Drude model in this context has however been questioned recently, and we do
not aim at a complete discussion of this issue here. Existing experiments are
low-temperature experiments, and are so far not accurate enough to distinguish
between the different predictions. We also calculate explicitly the
contribution from the zero-frequency mode for a dielectric. For a dielectric,
this zero-frequency problem is absent.Comment: 23 pages, LaTeX, 7 ps figures; expanded discussion, especially in
Sec. 5. To appear in Phys. Rev.
- …
