756 research outputs found
Simulation study of thermally initiated rail defects
Ultrasonically detected ‘squat type’ rail defects are becoming increasingly common on railways throughout the world. On the London Underground (LU) these defects are found on three lines. Focussing on the difference between these lines and others on the LU network has identified vehicles with modern AC traction characteristics as a common theme found only on problem lines. Metallurgical analysis of the defects found that the mechanisms for generation and growth are not consistent with conventional rolling contact fatigue, with evidence of significant thermal input. The defects are only found on open sections. The most susceptible areas to the defects are those where low-speed running is more common. A mathematical model of the traction package has been used to examine the forces and thermal input generated at the wheel–rail interface with modern wheel-spin control systems under wheel slip and adhesion recovery conditions. The outputs have been analysed to assess whether sufficient forces and temperatures are generated to explain the observed rail damage. The results suggest that under certain circumstances wheel-spin recovery generates sufficient rail surface energy for martensitic transformation. Additional modelling suggests that thermal input from wheel- spin aids crack propagation and that regions of slightly degraded (wet as opposed to leaf or oil contaminated) rail adhesion are sufficient to initiate these flaws
On the leading OPE corrections to the ghost-gluon vertex and the Taylor theorem
This brief note is devoted to a study of genuine non-perturbative corrections
to the Landau gauge ghost-gluon vertex in terms of the non-vanishing
dimension-two gluon condensate. We pay special attention to the kinematical
limit which the bare vertex takes for its tree-level expression at any
perturbative order, according to the well-known Taylor theorem. Based on our
OPE analysis, we also present a simple model for the vertex, in acceptable
agreement with lattice data.Comment: Final version published in JHE
Paradigm of tunable clustering using binarization of consensus partition matrices (Bi-CoPaM) for gene discovery
Copyright @ 2013 Abu-Jamous et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM), which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM). The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies.National Institute for Health Researc
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
The Hubbard model within the equations of motion approach
The Hubbard model has a special role in Condensed Matter Theory as it is
considered as the simplest Hamiltonian model one can write in order to describe
anomalous physical properties of some class of real materials. Unfortunately,
this model is not exactly solved except for some limits and therefore one
should resort to analytical methods, like the Equations of Motion Approach, or
to numerical techniques in order to attain a description of its relevant
features in the whole range of physical parameters (interaction, filling and
temperature). In this manuscript, the Composite Operator Method, which exploits
the above mentioned analytical technique, is presented and systematically
applied in order to get information about the behavior of all relevant
properties of the model (local, thermodynamic, single- and two- particle ones)
in comparison with many other analytical techniques, the above cited known
limits and numerical simulations. Within this approach, the Hubbard model is
shown to be also capable to describe some anomalous behaviors of the cuprate
superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency
One of the severe combined immunodeficiencies (SCIDs), which is caused by a genetic defect in the signal transduction pathways involved in T-cell activation, is the ZAP70 deficiency. Mutations in ZAP70 lead to both abnormal thymic development and defective T-cell receptor (TCR) signaling of peripheral T-cells. In contrast to the lymphopenia in most SCID patients, ZAP70-deficient patients have lymphocytosis, despite the selective absence of CD8+ T-cells. The clinical presentation is usually before 2 years of age with typical findings of SCID. Here, we present three new ZAP70-deficient patients who vary in their clinical presentation. One of the ZAP70-deficient patients presented as a classical SCID, the second patient presented as a healthy looking wheezy infant, whereas the third patient came to clinical attention for the eczematous skin lesions simulating atopic dermatitis with eosinophilia and elevated immunoglobulin E (IgE), similar to the Omenn syndrome. This study illustrates that awareness of the clinical heterogeneity of ZAP70 deficiency is of utmost importance for making a fast and accurate diagnosis, which will contribute to the improvement of the adequate treatment of this severe immunodeficiency
Towards Enhancing Hot Tooling to Form High-γ′ Superalloys
Ni-superalloys are well-established for use in high temperature applications in aerospace, power generation, and automotive sectors, yet, are seldom considered as materials for hot tooling. The operational conditions of hot forming dies potentially exceed those experienced by aircraft turbine discs. Fortunately, new disc alloys have pronounced elevated temperature capabilities and the current study focuses on implementing two advanced alloys, VDM 780 and Haynes 282 (H282) as hot tool materials. There is, however, inadequate evidence of their life-limiting properties and mechanisms in the in-service temperature regime of 700–900 ºC. Thus, realistic operating conditions were replicated by combining interrupted short and long-term thermal-mechanical tests. Initially, isothermal ageing in the furnace was used to compare the extent of γ′ coarsening between the alloys, and subsequent in-situ ageing and compression testing measured the accompanying loss in strength. Compression creep testing at stresses near the yield points (250–750 MPa) revealed accelerated creep rates at high temperatures. The results indicated that even as exposure duration, temperature, and applied stress all influence microstructural evolution, the exposure temperature was pivotal in determining the effective life of these γ′ strengthened alloys. Dissolution kinetics of γ′ around near-solvus temperatures was crucial and was governed by elemental additions. As a result, the research paves the way for a better understanding and design of superalloys with improved thermal integrity for hot tooling
Numerical Simulations of Void Linkage in Model Materials using a Nonlocal Ductile Damage Approximation
Experiments on the growth and linkage of 10 μm diameter holes laser drilled in high precision patterns into Al-plates were modelled with finite elements. The simulations used geometries identical to those of the experiments and incorporated ductile damage by element removal under the control of a ductile damage indicator based on the micromechanical studies of Rice and Tracey. A regularization of the problem was achieved through an integral-type nonlocal model based on the smoothing of the rate of a damage indicator D over a characteristic length L. The simulation does not predict the experimentally observed damage acceleration either in the case where no damage is included or when only a local damage model is used. However, the full three-dimensional simulations based on the nonlocal damage methodology do predict both the failure path and the failure strain at void linkage for almost all configurations studied. For the cases considered the critical parameter controlling the local deformations at void linkage was found to be the ratio between hole diameter and hole spacing
The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission
Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi‐perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency ∼100 Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi‐perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05–0.2fce by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first‐time 3‐D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi‐linear pitch angle diffusion and possible signatures of nonlinear interaction with high‐amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes
- …
