1,347 research outputs found
Mermin-Wagner theorem, flexural modes, and degraded carrier mobility in 2D crystals with broken horizontal mirror () symmetry
We show that the electron mobility in ideal, free-standing two-dimensional
`buckled' crystals with broken horizontal mirror () symmetry
and Dirac-like dispersion (such as silicene and germanene) is dramatically
affected by scattering with the acoustic flexural modes (ZA phonons). This is
caused both by the broken symmetry and by the diverging number
of long-wavelength ZA phonons, consistent with the Mermin-Wagner theorem.
Non--symmetric, `gapped' 2D crystals (such as semiconducting
transition-metal dichalcogenides with a tetragonal crystal structure) are
affected less severely by the broken symmetry, but equally
seriously by the large population of the acoustic flexural modes. We speculate
that reasonable long-wavelength cutoffs needed to stabilize the structure
(finite sample size, grain size, wrinkles, defects) or the anharmonic coupling
between flexural and in-plane acoustic modes (shown to be effective in
mirror-symmetric crystals, like free-standing graphene) may not be sufficient
to raise the electron mobility to satisfactory values. Additional effects (such
as clamping and phonon-stiffening by the substrate and/or gate insulator) may
be required.Comment: 33 pages, 7 figure
Scalable Atomistic Simulations of Quantum Electron Transport using Empirical Pseudopotentials
The simulation of charge transport in ultra-scaled electronic devices
requires the knowledge of the atomic configuration and the associated
potential. Such "atomistic" device simulation is most commonly handled using a
tight-binding approach based on a basis-set of localized orbitals. Here, in
contrast to this widely used tight-binding approach, we formulate the problem
using a highly accurate plane-wave representation of the atomic
(pseudo)-potentials. We develop a new approach that separately deals with the
intrinsic Hamiltonian, containing the potential due to the atomic
configuration, and the extrinsic Hamiltonian, related to the external
potential. We realize efficient performance by implementing a finite-element
like partition-of-unity approach combining linear shape functions with
Bloch-wave enhancement functions. We match the performance of previous
tight-binding approaches, while retaining the benefits of a plane wave based
model. We present the details of our model and its implementation in a
full-fledged self-consistent ballistic quantum transport solver. We demonstrate
our implementation by simulating the electronic transport and device
characteristics of a graphene nanoribbon transistor containing more than 2000
atoms. We analyze the accuracy, numerical efficiency and scalability of our
approach. We are able to speed up calculations by a factor of 100 compared to
previous methods based on plane waves and envelope functions. Furthermore, our
reduced basis-set results in a significant reduction of the required memory
budget, which enables devices with thousands of atoms to be simulated on a
personal computer
Lin-Kernighan Heuristic Adaptations for the Generalized Traveling Salesman Problem
The Lin-Kernighan heuristic is known to be one of the most successful
heuristics for the Traveling Salesman Problem (TSP). It has also proven its
efficiency in application to some other problems. In this paper we discuss
possible adaptations of TSP heuristics for the Generalized Traveling Salesman
Problem (GTSP) and focus on the case of the Lin-Kernighan algorithm. At first,
we provide an easy-to-understand description of the original Lin-Kernighan
heuristic. Then we propose several adaptations, both trivial and complicated.
Finally, we conduct a fair competition between all the variations of the
Lin-Kernighan adaptation and some other GTSP heuristics. It appears that our
adaptation of the Lin-Kernighan algorithm for the GTSP reproduces the success
of the original heuristic. Different variations of our adaptation outperform
all other heuristics in a wide range of trade-offs between solution quality and
running time, making Lin-Kernighan the state-of-the-art GTSP local search.Comment: 25 page
Branching on multi-aggregated variables
open5siopenGamrath, Gerald; Melchiori, Anna; Berthold, Timo; Gleixner, Ambros M.; Salvagnin, DomenicoGamrath, Gerald; Melchiori, Anna; Berthold, Timo; Gleixner, Ambros M.; Salvagnin, Domenic
The role of electron-electron scattering in spin transport
We investigate spin transport in quasi 2DEG formed by III-V semiconductor
heterojunctions using the Monte Carlo method. The results obtained with and
without electron-electron scattering are compared and appreciable difference
between the two is found. The electron-electron scattering leads to suppression
of Dyakonov-Perel mechanism (DP) and enhancement of Elliott-Yafet mechanism
(EY). Finally, spin transport in InSb and GaAs heterostructures is investigated
considering both DP and EY mechanisms. While DP mechanism dominates spin
decoherence in GaAs, EY mechanism is found to dominate in high mobility InSb.
Our simulations predict a lower spin relaxation/decoherence rate in wide gap
semiconductors which is desirable for spin transport.Comment: to appear in Journal of Applied Physic
Spin diffusion/transport in -type GaAs quantum wells
The spin diffusion/transport in -type (001) GaAs quantum well at high
temperatures ( K) is studied by setting up and numerically solving the
kinetic spin Bloch equations together with the Poisson equation
self-consistently. All the scattering, especially the electron-electron Coulomb
scattering, is explicitly included and solved in the theory. This enables us to
study the system far away from the equilibrium, such as the hot-electron effect
induced by the external electric field parallel to the quantum well. We find
that the spin polarization/coherence oscillates along the transport direction
even when there is no external magnetic field. We show that when the scattering
is strong enough, electron spins with different momentums oscillate in the same
phase which leads to equal transversal spin injection length and ensemble
transversal injection length. It is also shown that the intrinsic scattering is
already strong enough for such a phenomena. The oscillation period is almost
independent on the external electric field which is in agreement with the
latest experiment in bulk system at very low temperature [Europhys. Lett. {\bf
75}, 597 (2006)]. The spin relaxation/dephasing along the diffusion/transport
can be well understood by the inhomogeneous broadening, which is caused by the
momentum-dependent diffusion and the spin-orbit coupling, and the scattering.
The scattering, temperature, quantum well width and external magnetic/electric
field dependence of the spin diffusion is studied in detail.Comment: 12 pages, 6 figures, to be published in J Appl. Phy
Theoretical study of scattering in graphene ribbons in the presence of structural and atomistic edge roughness
We investigate the diffusive electron-transport properties of charge-doped
graphene ribbons and nanoribbons with imperfect edges. We consider different
regimes of edge scattering, ranging from wide graphene ribbons with (partially)
diffusive edge scattering to ribbons with large width variations and
nanoribbons with atomistic edge roughness. For the latter, we introduce an
approach based on pseudopotentials, allowing for an atomistic treatment of the
band structure and the scattering potential, on the self-consistent solution of
the Boltzmann transport equation within the relaxation-time approximation and
taking into account the edge-roughness properties and statistics. The resulting
resistivity depends strongly on the ribbon orientation, with zigzag (armchair)
ribbons showing the smallest (largest) resistivity and intermediate ribbon
orientations exhibiting intermediate resistivity values. The results also show
clear resistivity peaks, corresponding to peaks in the density of states due to
the confinement-induced subband quantization, except for armchair-edge ribbons
that show a very strong width dependence because of their claromatic behavior.
Furthermore, we identify a strong interplay between the relative position of
the two valleys of graphene along the transport direction, the correlation
profile of the atomistic edge roughness, and the chiral valley modes, leading
to a peculiar strongly suppressed resistivity regime, most pronounced for the
zigzag orientation.Comment: 13 pages, 7 figure
Anchoring of proteins to lactic acid bacteria
The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.
Characterisation of the secondary-neutron production in particle therapy treatments with the MONDO tracking detector
Particle Therapy (PT) is a non-invasive technique that exploits charged light ions for the irradiation of tumours that cannot be effectively treated with surgery or conventional radiotherapy. While the largest dose fraction is released to the tumour volume by the primary beam, a non-negligible amount of additional dose is due to the beam fragmentation that occurs along the path towards the target volume. In particular, the produced neutrons are particularly dangerous as they can release their energy far away from the treated area, increasing the risk of developing a radiogenic secondary malignant neoplasm after undergoing a treatment. A precise measurement of the neutron flux, energy spectrum and angular distributions is eagerly needed in order to improve the treatment planning system software, so as to predict the normal tissue toxicity in the target region and the risk of late complications in the whole body. The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project is dedicated to the characterisation of the secondary ultra-fast neutrons ([20-400] MeV energy range) produced in PT. The neutron tracking system exploits the reconstruction of the recoil protons produced in two consecutive (n, p) elastic scattering interactions to measure simultaneously the neutron incoming direction and energy. The tracker active media is a matrix of thin squared scintillating fibers arranged in orthogonally oriented layers that are read out by a sensor (SBAM) based on SPAD (Single-Photon Avalanche Diode) detectors developed in collaboration with the Fondazione Bruno Kessler (FBK)
The graceful exit from the anomaly-induced inflation: Supersymmetry as a key
The stable version of the anomaly-induced inflation does not need a fine
tuning and leads to sufficient expansion of the Universe. The non-stable
version (Starobinsky model) provides the graceful exit to the FRW phase. We
indicate the possibility of the inflation which is stable at the beginning and
unstable at the end. The effect is due to the soft supersymmetry breaking and
the decoupling of the massive sparticles at low energy.Comment: 10 pages, 2 figures using axodraw. Modified version. Discussion
concerning the gravitational scale modified, the effect of massive particles
in the last stage of inflation taken into accoun
- …
