486 research outputs found
Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics
A framework is introduced which explains the existence and similarities of
most exact solutions of the Einstein equations with a wide range of sources for
the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian
formulation. This class includes the spatially homogeneous cosmological models
and the astrophysically interesting static spherically symmetric models as well
as the stationary cylindrically symmetric models. The framework involves
methods for finding and exploiting hidden symmetries and invariant submanifolds
of the Hamiltonian formulation of the field equations. It unifies, simplifies
and extends most known work on hypersurface-homogeneous exact solutions. It is
shown that the same framework is also relevant to gravitational theories with a
similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for
publication in Phys. Rev.
Toddlers favor communicatively presented information over statistical reliability in learning about artifacts
Observed associations between events can be validated by statistical information of reliability or by testament of communicative sources. We tested whether toddlers learn from their own observation of efficiency, assessed by statistical information on reliability of interventions, or from communicatively presented demonstration, when these two potential types of evidence of validity of interventions on a novel artifact are contrasted with each other. Eighteen-month-old infants observed two adults, one operating the artifact by a method that was more efficient (2/3 probability of success) than that of the other (1/3 probability of success). Compared to the Baseline condition, in which communicative signals were not employed, infants tended to choose the less reliable method to operate the artifact when this method was demonstrated in a communicative manner in the Experimental condition. This finding demonstrates that, in certain circumstances, communicative sanctioning of reliability may override statistical evidence for young learners. Such a bias can serve fast and efficient transmission of knowledge between generations
Atomic scale interfacial magnetism and origin of metal-insulator transition in (LaNiO3)n/(CaMnO3)m superlattices: a first principles study
Interfacial magnetism and metal-insulator transition at LaNiO _3 3 -based oxide interfaces have triggered intense research efforts, because of the possible implications in future heterostructure device design and engineering. Experimental observation lack in some points a support from an atomistic view. In an effort to fill such gap, we hereby investigate the structural, electronic, and magnetic properties of (LaNiO _3 3 ) _n n /(CaMnO _3 3 ) _m m superlattices with varying LaNiO _3 3 thickness ( n ) using density functional theory including a Hubbard-type effective on-site Coulomb term. We successfully capture and explain the metal-insulator transition and interfacial magnetic properties, such as magnetic alignments and induced Ni magnetic moments which were recently observed experimentally in nickelate-based heterostructures. In the superlattices modeled in our study, an insulating state is found for n =1 and a metallic character for n =2, 4, with major contribution from Ni and Mn 3 d states. The insulating character originates from the disorder effect induced by sudden environment change for the octahedra at the interface, and associated to localized electronic states; on the other hand, for larger n , less localized interfacial states and increased polarity of the LaNiO _3 3 layers contribute to metallicity. We discuss how the interplay between double and super-exchange interaction via complex structural and charge redistributions results in interfacial magnetism. While (LaNiO _3 3 ) _n n /(CaMnO _3 3 ) _m m superlattices are chosen as prototype and for their experimental feasibility, our approach is generally applicable to understand the intricate roles of interfacial states and exchange mechanism between magnetic ions towards the overall response of a magnetic interface or superlattice
Approach to cis-Phlegmarine Alkaloids via Stereodivergent Reduction: Total Synthesis of (+)-Serratezomine E and Putative Structure of (−)-Huperzine N
A unified strategy for the synthesis of the cisphlegmarine group of alkaloids is presented, leading to the first synthesis of serratezomine E (1) as well as the putative structure of huperzine N (2). A contrasteric hydrogenation method was developed based on the use of Wilkinson's catalyst, which allowed the facial selectivity of standard hydrogenation to be completely overturned. Calculations were performed to determine the mechanism, and structures for huperzines M and N are reassigned
TMFoldRec: a statistical potential-based transmembrane protein fold recognition tool.
BACKGROUND: Transmembrane proteins (TMPs) are the key components of signal transduction, cell-cell adhesion and energy and material transport into and out from the cells. For the deep understanding of these processes, structure determination of transmembrane proteins is indispensable. However, due to technical difficulties, only a few transmembrane protein structures have been determined experimentally. Large-scale genomic sequencing provides increasing amounts of sequence information on the proteins and whole proteomes of living organisms resulting in the challenge of bioinformatics; how the structural information should be gained from a sequence. RESULTS: Here, we present a novel method, TMFoldRec, for fold prediction of membrane segments in transmembrane proteins. TMFoldRec based on statistical potentials was tested on a benchmark set containing 124 TMP chains from the PDBTM database. Using a 10-fold jackknife method, the native folds were correctly identified in 77 % of the cases. This accuracy overcomes the state-of-the-art methods. In addition, a key feature of TMFoldRec algorithm is the ability to estimate the reliability of the prediction and to decide with an accuracy of 70 %, whether the obtained, lowest energy structure is the native one. CONCLUSION: These results imply that the membrane embedded parts of TMPs dictate the TM structures rather than the soluble parts. Moreover, predictions with reliability scores make in this way our algorithm applicable for proteome-wide analyses. AVAILABILITY: The program is available upon request for academic use
Long-term associative learning predicts verbal short-term memory performance
Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting
Sensory experience modifies spontaneous state dynamics in a large-scale barrel cortical model
A homologue of the Parkinson's disease-associated protein LRRK2 undergoes a monomer-dimer transition during GTP turnover.
Mutations in LRRK2 are a common cause of genetic Parkinson's disease (PD). LRRK2 is a multi-domain Roco protein, harbouring kinase and GTPase activity. In analogy with a bacterial homologue, LRRK2 was proposed to act as a GTPase activated by dimerization (GAD), while recent reports suggest LRRK2 to exist under a monomeric and dimeric form in vivo. It is however unknown how LRRK2 oligomerization is regulated. Here, we show that oligomerization of a homologous bacterial Roco protein depends on the nucleotide load. The protein is mainly dimeric in the nucleotide-free and GDP-bound states, while it forms monomers upon GTP binding, leading to a monomer-dimer cycle during GTP hydrolysis. An analogue of a PD-associated mutation stabilizes the dimer and decreases the GTPase activity. This work thus provides insights into the conformational cycle of Roco proteins and suggests a link between oligomerization and disease-associated mutations in LRRK2
Outer membrane protein folding from an energy landscape perspective
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding
Understanding the molecular determinants driving the immunological specificity of the protective pilus 2a backbone protein of Group B Streptococcus
The pilus 2a backbone protein (BP-2a) is one of the most structurally and functionally characterized components of a potential vaccine formulation against Group B Streptococcus. It is characterized by six main immunologically distinct allelic variants, each inducing variant-specific protection. To investigate the molecular determinants driving the variant immunogenic specificity of BP-2a, in terms of single residue contributions, we generated six monoclonal antibodies against a specific protein variant based on their capability to recognize the polymerized pili structure on the bacterial surface. Three mAbs were also able to induce complement-dependent opsonophagocytosis killing of live GBS and target the same linear epitope present in the structurally defined and immunodominant domain D3 of the protein. Molecular docking between the modelled scFv antibody sequences and the BP-2a crystal structure revealed the potential role at the binding interface of some non-conserved antigen residues. Mutagenesis analysis confirmed the necessity of a perfect balance between charges, size and polarity at the binding interface to obtain specific binding of mAbs to the protein antigen for a neutralizing response
- …
