1,563 research outputs found
Fair Division of Indivisible Items
This paper analyzes criteria of fair division of a set of indivisible items among people whose revealed preferences are limited to rankings of the items and for whom no side payments are allowed. The criteria include refinements of Pareto optimality and envy-freeness as well as dominance-freeness, evenness of shares, and two criteria based on equally-spaced surrogate utilities, referred to as maxsum and equimax. Maxsum maximizes a measure of aggregate utility or welfare, whereas equimax lexicographically maximizes persons' utilities from smallest to largest. The paper analyzes conflicts among the criteria along possibilities and pitfalls of achieving fair division in a variety of circumstances.FAIR DIVISION; ALLOCATION OF INDIVISIBLE ITEMS; PARETO OPTIMALITY; ENVY-FREENESS; LEXICOGRAPHIC MAXIMUM
Paradoxes of Fair Division
Two or more players are required to divide up a set of indivisible items that they can rank from best to worst. They may, as well, be able to indicate preferences over subsets, or packages, of items. The main criteria used to assess the fairness of a division are efficiency (Pareto-optimality) and envy-freeness. Other criteria are also suggested, including a Rawlsian criterion that the worst-off player be made as well off as possible and a scoring procedure, based on the Borda count, that helps to render allocations as equal as possible. Eight paradoxes, all of which involve unexpected conflicts among the criteria, are described and classified into three categories, reflecting (1) incompatibilities between efficiency and envy-freeness, (2) the failure of a unique efficient and envy-free division to satisfy other criteria, and (3) the desirability, on occasion, of dividing up items unequally. While troublesome, the paradoxes also indicate opportunities for achieving fair division, which will depend on the fairness criteria one deems important and the trade-offs one considers acceptable.FAIR DIVISION; ALLOCATION OF INDIVISIBLE ITEMS; ENVY-FREENESS; PARETO- OPTIMALITY; RAWLSIAN JUSTICE; BORDA COUNT.
Representations of Binary Decision Rules by Generalized Decisiveness Structures
This paper is motivated by two apparently dissimilar deficiencies in the theory of social choice and the theory of cooperative games. Both deficiencies stem from what we regard as an inadequate conception of decisiveness or coalitional power. Our main purpose will be to present a more general concept of decisiveness and to show that this notion allows us to characterize broad classes of games and social choice procedures
Processing second-order stochastic dominance models using cutting-plane representations
This is the post-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2011 Springer-VerlagSecond-order stochastic dominance (SSD) is widely recognised as an important decision criterion in portfolio selection. Unfortunately, stochastic dominance models are known to be very demanding from a computational point of view. In this paper we consider two classes of models which use SSD as a choice criterion. The first, proposed by Dentcheva and Ruszczyński (J Bank Finance 30:433–451, 2006), uses a SSD constraint, which can be expressed as integrated chance constraints (ICCs). The second, proposed by Roman et al. (Math Program, Ser B 108:541–569, 2006) uses SSD through a multi-objective formulation with CVaR objectives. Cutting plane representations and algorithms were proposed by Klein Haneveld and Van der Vlerk (Comput Manage Sci 3:245–269, 2006) for ICCs, and by Künzi-Bay and Mayer (Comput Manage Sci 3:3–27, 2006) for CVaR minimization. These concepts are taken into consideration to propose representations and solution methods for the above class of SSD based models. We describe a cutting plane based solution algorithm and outline implementation details. A computational study is presented, which demonstrates the effectiveness and the scale-up properties of the solution algorithm, as applied to the SSD model of Roman et al. (Math Program, Ser B 108:541–569, 2006).This study was funded by OTKA, Hungarian
National Fund for Scientific Research, project 47340; by Mobile Innovation Centre, Budapest University of Technology, project 2.2; Optirisk Systems, Uxbridge, UK and by BRIEF (Brunel University Research Innovation and Enterprise Fund)
Under stochastic dominance Choquet-expected utility and anticipated utility are identical
The aim of this paper is to convince the reader that Choquet-expected utility, as initiated by Schmeidler (1982, 1989) for decision making under uncertainty, when formulated for decision making under risk naturally leads to anticipated utility, as initiated by Quiggin/Yaari. Thus the two generalizations of expected utility in fact are one
Testing the bounds on quantum probabilities
Bounds on quantum probabilities and expectation values are derived for
experimental setups associated with Bell-type inequalities. In analogy to the
classical bounds, the quantum limits are experimentally testable and therefore
serve as criteria for the validity of quantum mechanics.Comment: 9 pages, Revte
Mean-risk models using two risk measures: A multi-objective approach
This paper proposes a model for portfolio optimisation, in which distributions are characterised and compared on the basis of three statistics: the expected value, the variance and the CVaR at a specified confidence level. The problem is multi-objective and transformed into a single objective problem in which variance is minimised while constraints are imposed on the expected value and CVaR. In the case of discrete random variables, the problem is a quadratic program. The mean-variance (mean-CVaR) efficient solutions that are not dominated with respect to CVaR (variance) are particular efficient solutions of the proposed model. In addition, the model has efficient solutions that are discarded by both mean-variance and mean-CVaR models, although they may improve the return distribution. The model is tested on real data drawn from the FTSE 100 index. An analysis of the return distribution of the chosen portfolios is presented
Constitutional Judicial Tenure Legislation--The Words May Be New, but the Song Sounds the Same
The Complexity of Computing Minimal Unidirectional Covering Sets
Given a binary dominance relation on a set of alternatives, a common thread
in the social sciences is to identify subsets of alternatives that satisfy
certain notions of stability. Examples can be found in areas as diverse as
voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08]
proved that it is NP-hard to decide whether an alternative is contained in some
inclusion-minimal upward or downward covering set. For both problems, we raise
this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and
provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other
natural problems regarding minimal or minimum-size covering sets are hard or
complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of
our results is that neither minimal upward nor minimal downward covering sets
(even when guaranteed to exist) can be computed in polynomial time unless P=NP.
This sharply contrasts with Brandt and Fischer's result that minimal
bidirectional covering sets (i.e., sets that are both minimal upward and
minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure
- …
