9,834 research outputs found

    Quiet-time electron increases, a measure of conditions in the outer solar system

    Get PDF
    One possible explanation for quiet-time electron increases, increases in the intensity of 3-12 MeV interplanetary electrons that have been reported by McDonald, Cline and Simnett, is discussed. It is argued that the electrons in quiet-time increases are galactic in origin, but that the observed increases are not the result of any variation in the modulation of these particles in the inner solar system. It is suggested instead that quiet-time increases may occur when more electrons than normal penetrate a modulating region that lies far beyond the orbit of earth. The number of electrons penetrating this region may increase when field lines that have experienced an unusually large random walk in the photosphere are carried by the solar wind out to the region. As evidence for this increased random walk, it is shown that five solar rotations before most of the quiet-time increases there is an extended period when the amplitude of the diurnal anisotropy, as is measured by the Deep River neutron monitor, is relatively low. Five rotations delay time implies that the proposed modulating region lies at approximately 30 AU from the Sun, assuming that the average solar wind speed is constant over this distance at approximately 400 km/sec

    Damping of high frequency waves in the solar wind

    Get PDF
    Cyclotron damping by suprathermal fluxes of protons and electrons in the interplanetary medium will greatly attenuate high frequency Alfven waves and whistler waves within distances 1 AU of the sun. Electrons with energies between 50 eV to 2 KeV are heated as a result of damping interplanetary whistler waves with frequencies 2 omega meson/2 pion 30 Hz in the frame of the solar wind. This heating may account, in part, for the observed suprathermal tail of solar wind electrons. Protons with energies approximately 50 KeV damp Alfven waves with frequencies .001 omega meson/2 pion .01 Hz. This damping mechanism may explain several features of a scatter free solar electron events and high intensity, anisotropic solar proton streams

    Dissipation of the sectored heliospheric magnetic field near the heliopause: a mechanism for the generation of anomalous cosmic rays

    Full text link
    The recent observations of the anomalous cosmic ray (ACR) energy spectrum as Voyagers 1 and 2 crossed the heliospheric termination shock have called into question the conventional shock source of these energetic particles. We suggest that the sectored heliospheric magnetic field, which results from the flapping of the heliospheric current sheet, piles up as it approaches the heliopause, narrowing the current sheets that separate the sectors and triggering the onset of collisionless magnetic reconnection. Particle-in-cell simulations reveal that most of the magnetic energy is released and most of this energy goes into energetic ions with significant but smaller amounts of energy going into electrons. The energy gain of the most energetic ions results from their reflection from the ends of contracting magnetic islands, a first order Fermi process. The energy gain of the ions in contracting islands increases their parallel (to the magnetic field B{\bf B}) pressure pp_\parallel until the marginal firehose condition is reached, causing magnetic reconnection and associated particle acceleration to shut down. The model calls into question the strong scattering assumption used to derive the Parker transport equation and therefore the absence of first order Fermi acceleration in incompressible flows. A simple 1-D model for particle energy gain and loss is presented in which the feedback of the energetic particles on the reconnection drive is included. The ACR differential energy spectrum takes the form of a power law with a spectral index slightly above 1.5. The model has the potential to explain several key Voyager observations, including the similarities in the spectra of different ion species.Comment: Submitted to ApJ; shortened abstract; degraded figure qualit

    Kondo insulator SmB6 under strain: surface dominated conduction near room temperature

    Get PDF
    SmB6 is a strongly correlated mixed-valence Kondo insulator with a newly discovered surface state, proposed to be of non-trivial topological origin. However, the surface state dominates electrical conduction only below T* ~ 4 K limiting its scientific investigation and device application. Here, we report the enhancement of T * in SmB6 under the application of tensile strain. With 0.7% tensile strain we report surface dominated conduction at up to a temperature of 240 K, persisting even after the strain has been removed. This can be explained in the framework of strain-tuned temporal and spatial fluctuations of f-electron configurations, which might be generally applied to other mixed-valence materials. We note that this amount of strain can be indued in epitaxial SmB6 films via substrate in potential device applications.Comment: to appear in Nature Material

    The Fokker-Planck coefficient for pitch-angle scattering of cosmic rays

    Get PDF
    For the case of homogeneous, isotropic magnetic field fluctuations, it is shown that most theories which are based on the quasi-linear and adiabatic approximation yield the same integral for the Fokker-Planck coefficient for the pitch angle scattering of cosmic rays. For example, despite apparent differences, the theories due to Jokipii and to Klimas and Sandri yield the same integral. It is also shown, however, that this integral in most cases has been evaluated incorrectly in the past. For large pitch angles these errors become significant, and for pitch angles of 90 deg the actual Fokker-Planck coefficient contains a delta function. The implications for these corrections relating cosmic ray diffusion coefficients to observed properties of the interplanetary magnetic field are discussed

    Magnetotransport in the low carrier density ferromagnet EuB_6

    Full text link
    We present a magnetotransport study of the low--carrier density ferromagnet EuB_6. This semimetallic compound, which undergoes two ferromagnetic transitions at T_l = 15.3 K and T_c = 12.5 K, exhibits close to T_l a colossal magnetoresistivity (CMR). We quantitatively compare our data to recent theoretical work, which however fails to explain our observations. We attribute this disagreement with theory to the unique type of magnetic polaron formation in EuB_6.Comment: Conference contribution MMM'99, San Jos

    Crystal-field effects in the first-order valence transition in YbInCu4 induced by an external magnetic field

    Full text link
    As it was shown earlier [Dzero, Gor'kov, and Zvezdin, J. Phys.:Condens. Matter 12, L711 (2000)] the properties of the first-order valence phase transition in YbInCu4 in the wide range of magnetic fields and temperatures are perfectly described in terms of a simple entropy transition for free Yb ions. Within this approach, the crystal field effects have been taken into account and we show that the phase diagram in the BTB-T plane acquires some anisotropy with respect to the direction of an external magnetic field.Comment: 4 pages, 3 eps figures; minor changes; to be piblished in J. of Physics: Cond. Ma

    On the anomalous component

    Get PDF
    The so-called anomalous cosmic ray component, which occurs at energies of about 10 MeV/nucleon and consists only of He, N, O, and Ne, has been a subject of interest for more than a decade. The origin of this component is generally considered to be interstellar neutral gas that is ionized and accelerated in the solar wind. The mechanism and the location for the acceleration, however, remains an unsolved problem. A model is used which includes the effects of gradient and curvature drifts and considers the implications of observed spatial gradients of the anomalous component for the location of the acceleration region. It is concluded that if drifts are important the acceleration region cannot lie at the solar poles. It is also concluded that there is no single region for the acceleration which can account for both the observed intensities and gradients in models which include drift effects

    Evidence for electron-phonon interaction in Fe1x_{1-x}Mx_{x}Sb2_{2} (M=Co, Cr) single crystals

    Full text link
    We have measured polarized Raman scattering spectra of the Fe1x_{1-x}Cox_{x}Sb2_{2} and Fe1x_{1-x}Crx_{x}Sb2_{2} (0x\leq x\leq 0.5) single crystals in the temperature range between 15 K and 300 K. The highest energy B1gB_{1g} symmetry mode shows significant line asymmetry due to phonon mode coupling width electronic background. The coupling constant achieves the highest value at about 40 K and after that it remains temperature independent. Origin of additional mode broadening is pure anharmonic. Below 40 K the coupling is drastically reduced, in agreement with transport properties measurements. Alloying of FeSb2_2 with Co and Cr produces the B1g_{1g} mode narrowing, i.e. weakening of the electron-phonon interaction. In the case of Ag_{g} symmetry modes we have found a significant mode mixing
    corecore