7,244 research outputs found
Sonification of experimental parameters as a new method for efficient coding of behavior
Cognitive research is often focused on experimental condition-driven reactions. Ethological studies frequently rely on the observation of naturally occurring specific behaviors. In both cases, subjects are filmed during the study, so that afterwards behaviors can be coded on video. Coding should typically be blind to experimental conditions, but often requires more information than that present on video. We introduce a method for blindcoding of behavioral videos that takes care of both issues via three main innovations. First, of particular significance for playback studies, it allows creation of a “soundtrack” of the study, that is, a track composed of synthesized sounds representing different aspects of the experimental conditions, or other events, over time. Second, it facilitates coding behavior using this audio track, together with the possibly muted original video. This enables coding blindly to conditions as required, but not ignoring other relevant events. Third, our method makes use of freely available, multi-platform software, including scripts we developed
Chorusing, synchrony, and the evolutionary functions of rhythm
A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc.) with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony), we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, arguing that group behavior is key to understanding the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates). Finally, we propose an “Evolving Signal Timing” hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s) of rhythmic behavior in our “proto-musical” primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and language
Perceptual tuning influences rule generalization: Testing humans with monkey-tailored stimuli
Comparative research investigating how nonhuman animals generalize patterns of auditory stimuli often uses sequences of human speech syllables and reports limited generalization abilities in animals. Here, we reverse this logic, testing humans with stimulus sequences tailored to squirrel monkeys. When test stimuli are familiar (human voices), humans succeed in two types of generalization. However, when the same structural rule is instantiated over unfamiliar but perceivable sounds within squirrel monkeys’ optimal hearing frequency range, human participants master only one type of generalization. These findings have methodological implications for the design of comparative experiments, which should be fair towards all tested species’ proclivities and limitations
Recommended from our members
The evolution of rhythmic cognition: New perspectives and technologies in comparative research
Music is a pervasive phenomenon in human culture, and musical rhythm is virtually present in all musical traditions. Research on the evolution and cognitive underpinnings of rhythm can benefit from a number of approaches. We outline key concepts and definitions, allowing fine-grained analysis of rhythmic cognition in experimental studies. We advocate comparative animal research as a useful approach to answer questions about human music cognition and review experimental evidence from different species. Finally, we suggest future directions for research on the cognitive basis of rhythm. Apart from research in semi-natural setups, possibly allowed by “drum set for chimpanzees” prototypes presented here for the first time, mathematical modeling and systematic use of circular statistics may allow promising advances
Estimating the active space of male koala bellows: propagation of cues to size and identity in a Eucalyptus forest
Examining how increasing distance affects the information content of vocal signals is fundamental for determining the active space of a given species’ vocal communication system. In the current study we played back male koala bellows in a Eucalyptus forest to determine the extent that individual classification of male koala bellows becomes less accurate over distance, and also to quantify how individually distinctive acoustic features of bellows and size-related information degrade over distance. Our results show that the formant frequencies of bellows derived from Linear Predictive Coding can be used to classify calls to male koalas over distances of 1–50 m. Further analysis revealed that the upper formant frequencies and formant frequency spacing were the most stable acoustic features of male bellows as they propagated through the Eucalyptus canopy. Taken together these findings suggest that koalas could recognise known individuals at distances of up to 50 m and indicate that they should attend to variation in the upper formant frequencies and formant frequency spacing when assessing the identity of callers. Furthermore, since the formant frequency spacing is also a cue to male body size in this species and its variation over distance remained very low compared to documented inter-individual variation, we suggest that male koalas would still be reliably classified as small, medium or large by receivers at distances of up to 150 m
Performing Argentina in Spain after the Bombing: The Resignification of Theatrical Referents in Cecilia Rosetto in Madrid
Evidence of a structural anomaly at 14 K in polymerised CsC60
We report the results of a high-resolution synchrotron X-ray powder
diffraction study of polymerised CsC in the temperature range 4 to 40 K.
Its crystal structure is monoclinic (space group I2/m), isostructural with
RbC. Below 14 K, a spontaneous thermal contraction is observed along
both the polymer chain axis, and the interchain separation along [111],
. This structural anomaly could trigger the occurrence of the spin-singlet
ground state, observed by NMR at the same temperature.Comment: 8 pages, 5 figures, submitte
Variable temperature study of the crystal and magnetic structures of the giant magnetoresistant materials LMnAsO (L=La, Nd)
Peer reviewedPublisher PD
Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating
Modes in the frequency of distribution of fission track ages obtained from detrital zircon grains may prove characteristic of individual sandstone bodies, supporting the identification of the sources from which a particular flow of sedimentary detritus was derived and thus allowing new inferences to be made concerning palaeogeography. A computer program has been written and used to identify modes in the zircon fission track age distribution within two Lower Cretaceous sandstone samples from the Weald of southern England. Pronounced modes appear in one rock around 119 Ma, 160 Ma, 243 Ma and 309 Ma and in the other around 141 Ma, 175 Ma, 257 to 277 Ma and 394 to 453 Ma. The geological implications of these quite dissimilar zircon age spectra are discussed. It is concluded that they support the palaeogeographical models of Allen (1981) and indicate that the provenance of the first sample, from the Top Ashdown Sandstone member at Dallington in East Sussex, was almost entirely southerly, while that of the second, from the Netherside Sand member at Northchapel in West Sussex, was more varied, but predominantly westerly and northerl
- …
