7,284 research outputs found
Dispersion cancellation and non-classical noise reduction for large photon-number states
Nonlocal dispersion cancellation is generalized to frequency-entangled states
with large photon number N. We show that the same entangled states can
simultaneously exhibit a factor of 1/sqrt(N) reduction in noise below the
classical shot noise limit in precise timing applications, as was previously
suggested by Giovannetti, Lloyd and Maccone (Nature v412 (2001) p417). The
quantum-mechanical noise reduction can be destroyed by a relatively small
amount of uncompensated dispersion and entangled states of this kind have
larger timing uncertainties than the corresponding classical states in that
case. Similar results were obtained for correlated states, anti-correlated
states, and frequency-entangled coherent states, which shows that these effects
are a fundamental result of entanglement.Comment: 8 pages, 4 figures, REVTeX 4, submitted to Phys. Rev. A, v2: minor
changes in response to referee report, fig3 fixe
An evaluation of the post-ignition unblocking behavior of solid propellant aft-end ignition systems Final report
Determining postignition interactions between igniter and main motor flow by aft-end heated air simulation of solid propellant exhaus
Microwave spectroscopy of a carbon nanotube charge qubit
Carbon nanotube quantum dots allow accurate control of electron charge, spin
and valley degrees of freedom in a material which is atomically perfect and can
be grown isotopically pure. These properties underlie the unique potential of
carbon nanotubes for quantum information processing, but developing nanotube
charge, spin, or spin-valley qubits requires efficient readout techniques as
well as understanding and extending quantum coherence in these devices. Here,
we report on microwave spectroscopy of a carbon nanotube charge qubit in which
quantum information is encoded in the spatial position of an electron. We
combine radio-frequency reflectometry measurements of the quantum capacitance
of the device with microwave manipulation to drive transitions between the
qubit states. This approach simplifies charge-state readout and allows us to
operate the device at an optimal point where the qubit is first-order
insensitive to charge noise. From these measurements, we are able to quantify
the degree of charge noise experienced by the qubit and obtain an inhomogeneous
charge coherence of 5 ns. We use a chopped microwave signal whose duty-cycle
period is varied to measure the decay of the qubit states, yielding a charge
relaxation time of 48 ns
Heralded Two-Photon Entanglement from Probabilistic Quantum Logic Operations on Multiple Parametric Down-Conversion Sources
An ideal controlled-NOT gate followed by projective measurements can be used
to identify specific Bell states of its two input qubits. When the input qubits
are each members of independent Bell states, these projective measurements can
be used to swap the post-selected entanglement onto the remaining two qubits.
Here we apply this strategy to produce heralded two-photon polarization
entanglement using Bell states that originate from independent parametric
down-conversion sources, and a particular probabilistic controlled-NOT gate
that is constructed from linear optical elements. The resulting implementation
is closely related to an earlier proposal by Sliwa and Banaszek
[quant-ph/0207117], and can be intuitively understood in terms of familiar
quantum information protocols. The possibility of producing a ``pseudo-demand''
source of two-photon entanglement by storing and releasing these heralded pairs
from independent cyclical quantum memory devices is also discussed.Comment: 5 pages, 4 figures; submitted to IEEE Journal of Selected Topics in
Quantum Electronics, special issue on "Quantum Internet Technologies
Variable temperature study of the crystal and magnetic structures of the giant magnetoresistant materials LMnAsO (L=La, Nd)
Peer reviewedPublisher PD
Enhanced Heat Transfer from Arrays of Jets Impinging on Plates
Multiple jets of various shapes, orientation and configuration are used regularly in a wide range of engineering applications to provide heating or cooling with impingement on a plate being one of the most common configurations due to the improved heat transfer rates. Design optimization has largely relied on empirical correlations that are limited by the range over which they were originally generated. Computational Fluid Mechanics is now sufficiently advanced to be used as an alternative method for obtaining optimal designs. This project uses the commercial Fluent package to compute heat transfer from a bank of jets impinging on a plate. Results for a single jet are validated against experimental data. The use of advanced turbulence modeling and appropriate boundary layer formulations are key ingredients for obtaining reliable calculations. The heat transfer resulting form the use of multi-jet configurations will be discussed in the paper
Inferring Coupling of Distributed Dynamical Systems via Transfer Entropy
In this work, we are interested in structure learning for a set of spatially distributed dynamical systems, where individual subsystems are coupled via latent variables and observed through a filter. We represent this model as a directed acyclic graph (DAG) that characterises the unidirectional coupling between subsystems. Standard approaches to structure learning are not applicable in this framework due to the hidden variables, however we can exploit the properties of certain dynamical systems to formulate exact methods based on state space reconstruction. We approach the problem by using reconstruction theorems to analytically derive a tractable expression for the KL-divergence of a candidate DAG from the observed dataset. We show this measure can be decomposed as a function of two information-theoretic measures, transfer entropy and stochastic interaction. We then present two mathematically robust scoring functions based on transfer entropy and statistical independence tests. These results support the previously held conjecture that transfer entropy can be used to infer effective connectivity in complex networks
- …
