298 research outputs found
Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-Poor Giants
New abundances for neutron-capture (n-capture) elements in a large sample of
metal-poor giants from the Bond survey are presented. The spectra were acquired
with the KPNO 4-m echelle and coude feed spectrographs, and have been analyzed
using LTE fine-analysis techniques with both line analysis and spectral
synthesis. Abundances of eight n-capture elements (Sr, Y, Zr, Ba, La, Nd, Eu,
Dy) in 43 stars have been derived from blue (lambda = 4070--4710, R~20,000, S/N
ratio~100-200) echelle spectra and red (lambda = 6100--6180, R~22,000, S/N
ratio~100-200) coude spectra, and the abundance of Ba only has been derived
from the red spectra for an additional 27 stars. Overall, the abundances show
clear evidence for a large star-to-star dispersion in the heavy element-to-iron
ratios. The new data also confirm that at metallicities [Fe/H] <~ --2.4, the
abundance pattern of the heavy (Z >= 56) n-capture elements in most giants is
well-matched to a scaled Solar System r-process nucleosynthesis pattern. The
onset of the main r-process can be seen at [Fe/H] ~ --2.9. Contributions from
the s-process can first be seen in some stars with metallicities as low as
[Fe/H] ~ --2.75, and are present in most stars with metallicities [Fe/H] >
--2.3. The lighter n-capture elements (Sr-Y-Zr) are enhanced relative to the
heavier r-process element abundances. Their production cannot be attributed
solely to any combination of the Solar System r- and main s-processes, but
requires a mixture of material from the r-process and from an additional
n-capture process which can operate at early Galactic time.Comment: Text + 5 Tables and 11 Figures: Submitted to the Astrophysical
Journa
Pathomx:an interactive workflow-based tool for the analysis of metabolomic data
BACKGROUND: Metabolomics is a systems approach to the analysis of cellular processes through small-molecule metabolite profiling. Standardisation of sample handling and acquisition approaches has contributed to reproducibility. However, the development of robust methods for the analysis of metabolomic data is a work-in-progress. The tools that do exist are often not well integrated, requiring manual data handling and custom scripting on a case-by-case basis. Furthermore, existing tools often require experience with programming environments such as MATLAB® or R to use, limiting accessibility. Here we present Pathomx, a workflow-based tool for the processing, analysis and visualisation of metabolomic and associated data in an intuitive and extensible environment. RESULTS: The core application provides a workflow editor, IPython kernel and a HumanCyc™-derived database of metabolites, proteins and genes. Toolkits provide reusable tools that may be linked together to create complex workflows. Pathomx is released with a base set of plugins for the import, processing and visualisation of data. The IPython backend provides integration with existing platforms including MATLAB® and R, allowing data to be seamlessly transferred. Pathomx is supplied with a series of demonstration workflows and datasets. To demonstrate the use of the software we here present an analysis of 1D and 2D (1)H NMR metabolomic data from a model system of mammalian cell growth under hypoxic conditions. CONCLUSIONS: Pathomx is a useful addition to the analysis toolbox. The intuitive interface lowers the barrier to entry for non-experts, while scriptable tools and integration with existing tools supports complex analysis. We welcome contributions from the community. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-014-0396-9) contains supplementary material, which is available to authorized users
Neuromuscular Alterations After Ankle Sprains: An Animal Model to Establish Causal Links After Injury
Context: The mechanisms that contribute to the development of chronic ankle instability are not understood. Investigators have developed a hypothetical model in which neuromuscular alterations that stem from damaged ankle ligaments are thought to affect periarticular and proximal muscle activity. However, the retrospective nature of these studies does not allow a causal link to be established.
Objective: To assess temporal alterations in the activity of 2 periarticular muscles of the rat ankle and 2 proximal muscles of the rat hind limb after an ankle sprain.
Design: Controlled laboratory study.
Setting: Laboratory.
Patients or Other Participants: Five healthy adult male Long Evans rats (age = 16 weeks, mass = 400.0 ± 13.5 g).
Intervention(s): Indwelling fine-wire electromyography (EMG) electrodes were implanted surgically into the biceps femoris, medial gastrocnemius, vastus lateralis, and tibialis anterior muscles of the rats. We recorded baseline EMG measurements while the rats walked on a motor-driven treadmill and then induced a closed lateral ankle sprain by overextending the lateral ankle ligaments. After ankle sprain, the rats were placed on the treadmill every 24 hours for 7 days, and we recorded postsprain EMG data.
Main Outcome Measure(s): Onset time of muscle activity, phase duration, sample entropy, and minimal detectable change (MDC) were assessed and compared with baseline using 2-tailed dependent t tests.
Results: Compared with baseline, delayed onset time of muscle activity was exhibited in the biceps femoris (baseline = −16.7 ± 54.0 milliseconds [ms]) on day 0 (5.2 ± 64.1 ms; t4 = −4.655, P = .043) and tibialis anterior (baseline = 307.0 ± 64.2 ms) muscles on day 3 (362.5 ± 55.9 ms; t4 = −5.427, P = .03) and day 6 (357.3 ± 39.6 ms; t4 = −3.802, P = .02). Longer phase durations were observed for the vastus lateralis (baseline = 321.9 ± 92.6 ms) on day 3 (401.3 ± 101.2 ms; t3 = −4.001, P = .03), day 4 (404.1 ± 93.0 ms; t3 = −3.320, P = .048), and day 5 (364.6 ± 105.2 ms; t3 = −3.963, P = .03) and for the tibialis anterior (baseline = 103.9 ± 16.4 ms) on day 4 (154.9 ± 7.8 ms; t3 = −4.331, P = .050) and day 6 (141.9 ± 16.2 ms; t3 = −3.441, P = .03). After sprain, greater sample entropy was found for the vastus lateralis (baseline = 0.7 ± 0.3) on day 6 (0.9 ± 0.4; t4 = −3.481, P = .03) and day 7 (0.9 ± 0.3; t4 = −2.637, P = .050) and for the tibialis anterior (baseline = 0.6 ± 0.4) on day 4 (0.9 ± 0.5; t4 = −3.224, P = .03). The MDC analysis revealed increased sample entropy values for the vastus lateralis and tibialis anterior.
Conclusions: Manually inducing an ankle sprain in a rat by overextending the lateral ankle ligaments altered the complexity of muscle-activation patterns, and the alterations exceeded the MDC of the baseline data
Bringing Back a Healthy Buzz? Invertebrate Parasites and Reintroductions:A Case Study in Bumblebees
Reintroductions can play a key role in the conservation of endangered species. Parasites may impact reintroductions, both positively and negatively, but few case studies of how to manage parasites during reintroductions exist. Bumblebees are in decline at regional and global scales, and reintroductions can be used to re-establish extinct local populations. Here we report on how the risks associated with parasites are being managed in an ongoing reintroduction of the short-haired bumblebee, Bombus subterraneus, to the UK. Disease risk analysis was conducted and disease risk management plans constructed to design a capture-quarantine-release system that minimised the impacts on both the bumblebees and on their natural parasites. Given that bumblebee parasites are (i) generalists, (ii) geographically ubiquitous, and (iii) show evidence of local adaptation, the disease risk management plan was designed to limit the co-introduction of parasites from the source population in Sweden to the destination site in the UK. Results suggest that this process at best eliminated, or at least severely curtailed the co-introduction of parasites, and ongoing updates of the plan enabled minimization of impacts on natural host-parasite dynamics in the Swedish source population. This study suggests that methods designed for reintroductions of vertebrate species can be successfully applied to invertebrates. Future reintroductions of invertebrates where the parasite fauna is less well known should take advantage of next-generation barcoding and multiple survey years prior to the start of reintroductions, to develop comprehensive disease risk management plans
Effectiveness of community-links practitioners in areas of high socioeconomic deprivation
PURPOSE: To assess the effect of a primary care–based community-links practitioner (CLP) intervention on patients’ quality of life and well-being.
METHODS: Quasi-experimental cluster-randomized controlled trial in socioeconomically deprived areas of Glasgow, Scotland. Adult patients (aged 18 years or older) referred to CLPs in 7 intervention practices were compared with a random sample of adult patients from 8 comparison practices at baseline and 9 months. Primary outcome: health-related quality of life (EQ-5D-5L, a standardized measure of self-reported health-related quality of life that assesses 5 dimensions at 5 levels of severity). Secondary outcomes: well-being (Investigating Choice Experiments for the Preferences of Older People Capability Measure for Adults [ICECAP-A]), depression (Hospital Anxiety and Depression Scale, Depression [HADS-D]), anxiety (Hospital Anxiety and Depression Scale, Anxiety [HADS-A]), and self-reported exercise. Multilevel, multiregression analyses adjusted for baseline differences. Patients were not blinded to the intervention, but outcome analysis was masked.
RESULTS: Data were collected on 288 and 214 (74.3%) patients in the intervention practices at baseline and follow-up, respectively, and on 612 and 561 (92%) patients in the comparison practices. Intention-to-treat analysis found no differences between the 2 groups for any outcome. In subgroup analyses, patients who saw the CLP on 3 or more occasions (45% of those referred) had significant improvements in EQ-5D-5L, HADS-D, HADS-A, and exercise levels. There was a high positive correlation between CLP consultation rates and patient uptake of suggested community resources.
CONCLUSIONS: We were unable to prove the effectiveness of referral to CLPs based in primary care in deprived areas for improving patient outcomes. Future efforts to boost uptake and engagement could improve overall outcomes, although the apparent improvements in those who regularly saw the CLPs may be due to reverse causality. Further research is needed before wide-scale deployment of this approach
X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3
By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins
Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant- and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni
BACKGROUND: Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. B. glabrata/S. mansoni provides a useful model system for investigating the intimate interactions between host and parasite. Examining differential gene expression between S. mansoni-exposed schistosome-resistant and susceptible snail lines will identify genes and pathways that may be involved in snail defences. RESULTS: We have developed a 2053 element cDNA microarray for B. glabrata containing clones from ORESTES (Open Reading frame ESTs) libraries, suppression subtractive hybridization (SSH) libraries and clones identified in previous expression studies. Snail haemocyte RNA, extracted from parasite-challenged resistant and susceptible snails, 2 to 24 h post-exposure to S. mansoni, was hybridized to the custom made cDNA microarray and 98 differentially expressed genes or gene clusters were identified, 94 resistant-associated and 4 susceptible-associated. Quantitative PCR analysis verified the cDNA microarray results for representative transcripts. Differentially expressed genes were annotated and clustered using gene ontology (GO) terminology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 61% of the identified differentially expressed genes have no known function including the 4 susceptible strain-specific transcripts. Resistant strain-specific expression of genes implicated in innate immunity of invertebrates was identified, including hydrolytic enzymes such as cathepsin L, a cysteine proteinase involved in lysis of phagocytosed particles; metabolic enzymes such as ornithine decarboxylase, the rate-limiting enzyme in the production of polyamines, important in inflammation and infection processes, as well as scavenging damaging free radicals produced during production of reactive oxygen species; stress response genes such as HSP70; proteins involved in signalling, such as importin 7 and copine 1, cytoplasmic intermediate filament (IF) protein and transcription enzymes such as elongation factor 1α and EF-2. CONCLUSION: Production of the first cDNA microarray for profiling gene expression in B. glabrata provides a foundation for expanding our understanding of pathways and genes involved in the snail internal defence system (IDS). We demonstrate resistant strain-specific expression of genes potentially associated with the snail IDS, ranging from signalling and inflammation responses through to lysis of proteinacous products (encapsulated sporocysts or phagocytosed parasite components) and processing/degradation of these targeted products by ubiquitination
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Structured exercise programs for higher education students experiencing mental health challenges: background, significance, and implementation
The incidence of mental illness is greatest among young adults, and those enrolled in higher education may be particularly vulnerable compared to the general young adult population. Many higher education institutions employ student support staff tasked with implementing strategies to improve student wellbeing and mental illness. However, these strategies tend to be focused on clinical therapies and pharmacological interventions with limited lifestyle approaches. Exercise is an effective method for addressing mental illness and promoting wellbeing, yet widespread provision of structured exercise services to support treatment options for students with mental health challenges has not been fully realized. In an effort to guide exercise strategies for student mental health, we synthesize considerations for developing and delivering exercise programs in higher education settings. We draw directly from the evidence base on existing exercise programs in higher education; and the broader behavior change, exercise adherence, health psychology, implementation science, and exercise prescription literatures. Our broad considerations cover issues regarding program engagement and behavior change, exercise ‘dose’ and prescription, integration with other on-campus services, and robust research and evaluation. These considerations may provide impetus for widespread program development and implementation, as well as informing research focused on protecting and improving student mental health
- …
