126 research outputs found
Firm finances, weather derivatives and geography
This paper considers some intellectual, practical and political dimensions of collaboration between human and physical geographers exploring how firms are using relatively new financial products – weather derivatives – to displace any costs of weather-related uncertainty and risk. The paper defines weather derivatives and indicates how they differ from weather insurance products before considering the geo-political, cultural and economic context for their creation. The paper concludes by reflecting on the challenges of research collaboration across the human–physical geography divide and suggests that while such initiatives may be undermined by a range of institutional and intellectual factors, conversations between physical and human geographers remain and are likely to become increasingly pertinent. The creation of a market in weather derivatives raises a host of urgent political and regulatory questions and the confluence of natural and social knowledges, co-existing within and through the geography academy, provides a constructive and creative basis from which to engage with this new market and wider discourses of uneven economic development and climate change
The Pan-STARRS Moving Object Processing System
We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern
software package that produces automatic asteroid discoveries and
identifications from catalogs of transient detections from next-generation
astronomical survey telescopes. MOPS achieves > 99.5% efficiency in producing
orbits from a synthetic but realistic population of asteroids whose
measurements were simulated for a Pan-STARRS4-class telescope. Additionally,
using a non-physical grid population, we demonstrate that MOPS can detect
populations of currently unknown objects such as interstellar asteroids.
MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope
despite differences in expected false detection rates, fill-factor loss and
relatively sparse observing cadence compared to a hypothetical Pan-STARRS4
telescope and survey. MOPS remains >99.5% efficient at detecting objects on a
single night but drops to 80% efficiency at producing orbits for objects
detected on multiple nights. This loss is primarily due to configurable MOPS
processing limits that are not yet tuned for the Pan-STARRS1 mission.
The core MOPS software package is the product of more than 15 person-years of
software development and incorporates countless additional years of effort in
third-party software to perform lower-level functions such as spatial searching
or orbit determination. We describe the high-level design of MOPS and essential
subcomponents, the suitability of MOPS for other survey programs, and suggest a
road map for future MOPS development.Comment: 57 Pages, 26 Figures, 13 Table
NFIRAOS adaptive optics for the Thirty Meter Telescope
NFIRAOS (Narrow-Field InfraRed Adaptive Optics System) will be the first-light multi-conjugate adaptive optics system for the Thirty Meter Telescope (TMT). NFIRAOS houses all of its opto-mechanical sub-systems within an optics enclosure cooled to precisely -30°C in order to improve sensitivity in the near-infrared. It supports up to three client science instruments, including the first-light InfraRed Imaging Spectrograph (IRIS). Powering NFIRAOS is a Real Time Controller that will process the signals from six laser wavefront sensors, one natural guide star pyramid WFS, up to three low-order on-instrument WFS and up to four guide windows on the client instrument’s science detector in order to correct for atmospheric turbulence, windshake, optical errors and plate-scale distortion. NFIRAOS is currently preparing for its final design review in late June 2018 at NRC Herzberg in Victoria, British Columbia in partnership with Canadian industry and TMT
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Short-term variability in euphotic zone biogeochemistry and primary productivity at Station ALOHA : a case study of summer 2012
Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1145–1164, doi:10.1002/2015GB005141.Time-series observations are critical to understand the structure, function, and dynamics of marine ecosystems. The Hawaii Ocean Time-series program has maintained near-monthly sampling at Station ALOHA (22°45′N, 158°00′W) in the oligotrophic North Pacific Subtropical Gyre (NPSG) since 1988 and has identified ecosystem variability over seasonal to interannual timescales. To further extend the temporal resolution of these near-monthly time-series observations, an extensive field campaign was conducted during July–September 2012 at Station ALOHA with near-daily sampling of upper water-column biogeochemistry, phytoplankton abundance, and activity. The resulting data set provided biogeochemical measurements at high temporal resolution and documents two important events at Station ALOHA: (1) a prolonged period of low productivity when net community production in the mixed layer shifted to a net heterotrophic state and (2) detection of a distinct sea-surface salinity minimum feature which was prominent in the upper water column (0–50 m) for a period of approximately 30 days. The shipboard observations during July–September 2012 were supplemented with in situ measurements provided by Seagliders, profiling floats, and remote satellite observations that together revealed the extent of the low productivity and the sea-surface salinity minimum feature in the NPSG.NOAA Climate Observation Division; National Science Foundation (NSF) Center for Microbial Oceanography: Research and Education (C-MORE) Grant Numbers: EF0424599, OCE-1153656, OCE-1260164; Gordon and Betty Moore Foundation Marine Microbiology Investigator2016-02-1
T Cell Receptor-Like Recognition of Tumor In Vivo by Synthetic Antibody Fragment
A major difficulty in treating cancer is the inability to differentiate between normal and tumor cells. The immune system differentiates tumor from normal cells by T cell receptor (TCR) binding of tumor-associated peptides bound to Major Histocompatibility Complex (pMHC) molecules. The peptides, derived from the tumor-specific proteins, are presented by MHC proteins, which then serve as cancer markers. The TCR is a difficult protein to use as a recombinant protein because of production issues and has poor affinity for pMHC; therefore, it is not a good choice for use as a tumor identifier outside of the immune system. We constructed a synthetic antibody-fragment (Fab) library in the phage-display format and isolated antibody-fragments that bind pMHC with high affinity and specificity. One Fab, fE75, recognizes our model cancer marker, the Human Epidermal growth factor Receptor 2 (HER2/neu) peptide, E75, bound to the MHC called Human Leukocyte Antigen-A2 (HLA-A2), with nanomolar affinity. The fE75 bound selectively to E75/HLA-A2 positive cancer cell lines in vitro. The fE75 Fab conjugated with 64Cu selectively accumulated in E75/HLA-A2 positive tumors and not in E75/HLA-A2 negative tumors in an HLA-A2 transgenic mouse as probed using positron emission tomography/computed tomography (PET/CT) imaging. Considering that hundreds to thousands of different peptides bound to HLA-A2 are present on the surface of each cell, the fact that fE75 arrives at the tumor at all shows extraordinary specificity. These antibody fragments have great potential for diagnosis and targeted drug delivery in cancer
NFIRAOS adaptive optics for the Thirty Meter Telescope
NFIRAOS (Narrow-Field InfraRed Adaptive Optics System) will be the first-light multi-conjugate adaptive optics system for the Thirty Meter Telescope (TMT). NFIRAOS houses all of its opto-mechanical sub-systems within an optics enclosure cooled to precisely -30°C in order to improve sensitivity in the near-infrared. It supports up to three client science instruments, including the first-light InfraRed Imaging Spectrograph (IRIS). Powering NFIRAOS is a Real Time Controller that will process the signals from six laser wavefront sensors, one natural guide star pyramid WFS, up to three low-order on-instrument WFS and up to four guide windows on the client instrument’s science detector in order to correct for atmospheric turbulence, windshake, optical errors and plate-scale distortion. NFIRAOS is currently preparing for its final design review in late June 2018 at NRC Herzberg in Victoria, British Columbia in partnership with Canadian industry and TMT
Comparison of the Diagnostic Performance of the Central Vein Sign and CSF Oligoclonal Bands Supporting the Diagnosis of Multiple Sclerosis
Background and ObjectivesThe central vein sign (CVS) describes the presence of venules within multiple sclerosis (MS) brain lesions, visible on T2*-weighted MRI. In the upcoming revision of the MS diagnostic criteria, the simplified “rule of 6” (i.e., finding 6 lesions with a central venule) can support the diagnosis of MS as an alternative to lumbar puncture (LP). We evaluated whether a T2*-weighted MRI scan is more sensitive than oligoclonal bands (OCBs) for diagnosing MS at presentation with a typical clinically isolated syndrome (CIS). We also compared the tolerability of LP and the additional MRI.MethodsParticipants requiring an LP to meet the 2017 McDonald diagnostic criteria for MS were enrolled in this multicenter, prospective, diagnostic superiority study from 3 UK neuroscience centers. A six-minute T2*-weighted sequence was used to assess the CVS using 2 definitions: a 40% threshold of all eligible lesions and the rule of 6. These were compared with OCBs, using the clinical diagnosis at 18 months as the reference standard.ResultsOf 113 participants, 99 (mean age: 38, female: 73%) have completed all study activities: 80 were diagnosed with MS, 10 remained CIS, 8 had alternative diagnoses, and 1 remained without a diagnosis. No significant difference in diagnostic sensitivity was detected between 40% CVS threshold (90% [CI 81%–96%]) and OCB testing (84% [CI 74%–91%]) (p = 0.332). The rule of 6 had a sensitivity of 91% (CI 83%–96%). Side effects were reported by 75% following LP compared with 9% following MRI. All participants preferred their MRI scan over their LP.DiscussionCVS and OCB testing is equally sensitive in supporting the diagnosis of MS in cases of typical CIS. CVS assessed using the 40% threshold, and the simpler rule of 6 produces equivalent diagnostic performance. Compared with OCB testing, CVS testing seems safer and better tolerated by patients. Further studies are needed to evaluate CVS specificity, particularly outside of typical CIS cases, as studied here.Classification of EvidenceThis study provides Class IV evidence that CSF OCBs and the CVS are equally sensitive in supporting a diagnosis of MS in patients presenting with CIS
A psycho-Geoinformatics approach for investigating older adults’ driving behaviours and underlying cognitive mechanisms
Introduction: Safe driving constantly challenges the driver’s ability to respond to the dynamic traffic scene under space and time constraints. It is of particular importance for older drivers to perform sufficient visual and motor actions with effective coordination due to the fact of age-related cognitive decline. However, few studies have been able to integrate drivers’ visual-motor behaviours with environmental information in a spatial-temporal context and link to the cognitive conditions of individual drivers. Little is known about the mechanisms that underpin the deterioration in visual-motor coordination of older drivers. Development: Based on a review of driving-related cognitive decline in older adults and the context of driver-vehicle-environment interactions, this paper established a conceptual framework to identify the parameters of driver’s visual and motor behaviour, and reveal the cognitive process from visual search to vehicle control in driving. The framework led to a psycho-geoinformatics approach to measure older drivers’ driving behaviours and investigate the underlying cognitive mechanisms. The proposed data collection protocol and the analysis and assessments depicted the psycho-geoinformatics approach on obtaining quantified variables and the key means of analysis, as well as outcome measures. Conclusions: Recordings of the driver and their interactions with the vehicle and environment at a detailed scale give a closer assessment of the driver’s behaviours. Using geoinformatics tools in driving behaviours assessment opens a new era of research with many possible analytical options, which do not have to rely on human observations. Instead, it receives clear indicators of the individual drivers’ interactions with the vehicle and the traffic environment. This approach should make it possible to identify lower-performing older drivers and problematic visual and motor behaviours, and the cognitive predictors of risky driving behaviours. A better targeted regulation and tailored intervention programs for older can be developed by further research
- …
