2,491 research outputs found

    X-shooter search for outgassing from Main Belt Comet P/2012 T1 (Pan-STARRS)

    Get PDF
    Context. Main Belt Comets are a recently identified population of minor bodies with stable asteroid-like orbits but cometary appearances. Sublimation of water ice is the most likely mechanism for their recurrent activity (i.e. dust tails and dust comae), although there has been no direct detection of gas. These peculiar objects could hold the key to the origin of water on Earth. Aims. In this paper we present a search for the gas responsible for lifting dust from P/2012 T1 (Pan-STARRS), and review previous attempts at such measurements. To date such searches have mainly been indirect, looking for the common cometary gas CN rather than gasses related to water itself. Methods. We use the VLT and X-shooter to search for emission from OH in the UV, a direct dissociation product of water. Results. We do not detect any emission lines, and place an upper limit on water production rate from P/2012 T1 of 8 − 9 × 1025 molecules s−1. This is similar to limits derived from observations using the Herschel space telescope. Conclusions. We conclude that the best current facilities are incapable of detecting water emission at the exceptionally low levels required to produce the observed activity in Main Belt Comets

    Effects of hydrogen/deuterium absorption on the magnetic properties of Co/Pd multilayers

    Get PDF
    The effects of hydrogen (H2) and deuterium (D2) absorption were studied in two Co/Pd multilayers with perpendicular magnetic anisotropy (PMA) using polarized neutron reflectivity (PNR). PNR was measured in an external magnetic field H applied in the plane of the sample with the magnetization M confined in the plane for {\mu}_o H= 6.0 T and partially out of plane at 0.65 T. Nominal thicknesses of the Co and Pd layers were 2.5 {\AA} and 21 {\AA}, respectively. Because of these small values, the actual layer chemical composition, thickness, and interface roughness parameters were determined from the nuclear scattering length density profile ({\rho}_n) and its derivative obtained from both x-ray reflectivity and PNR, and uncertainties were determined using Monte Carlo analysis. The PNR {\rho}_n showed that although D2 absorption occurred throughout the samples, absorption in the multilayer stack was modest (0.02 D per Pd atom) and thus did not expand. Direct magnetometry showed that H2 absorption decreased the total M at saturation and increased the component of M in the plane of the sample when not at saturation. The PNR magnetic scattering length density ({\rho}_m) revealed that the Pd layers in the multilayer stack were magnetized and that their magnetization was preferentially modified upon D2 absorption. In one sample, a modulation of M with twice the multilayer period was observed at {\mu}_o H= 0.65 T, which increased upon D2 absorption. These results indicate that H2 or D2 absorption decreases both the PMA and total magnetization of the samples. The lack of measurable expansion during absorption indicates that these changes are primarily governed by modification of the electronic structure of the material.Comment: to appear in Physics review B, 201

    Spectroscopy of D-type asteroids

    Get PDF
    We have performed a spectroscopic survey of 19 D-type asteroids. Comparison with previous photometry shows excellent agreement. Although the majority have similar colors to cometary nuclei, no cometary emission bands were present in any of the spectra. Absorption bands sporadically appearing were apparently due to stellar objects, and no features inherent to the asteroids were observed

    Physical and dynamical characterisation of low Delta-V NEA (190491) 2000 FJ10

    Full text link
    We investigated the physical properties and dynamical evolution of Near Earth Asteroid (NEA) (190491) 2000 FJ10 in order to assess the suitability of this accessible NEA as a space mission target. Photometry and colour determination were carried out with the 1.54 m Kuiper Telescope and the 10 m Southern African Large Telescope during the object's recent favourable apparition in 2011-12. During the earlier 2008 apparition, a spectrum of the object in the 6000-9000 Angstrom region was obtained with the 4.2 m William Herschel Telescope. Interpretation of the observational results was aided by numerical simulations of 1000 dynamical clones of 2000 FJ10 up to 10^6 yr in the past and in the future. The asteroid's spectrum and colours determined by our observations suggest a taxonomic classification within the S-complex although other classifications (V, D, E, M, P) cannot be ruled out. On this evidence, it is unlikely to be a primitive, relatively unaltered remnant from the early history of the solar system and thus a low priority target for robotic sample return. Our photometry placed a lower bound of 2 hrs to the asteroid's rotation period. Its absolute magnitude was estimated to be 21.54+-0.1 which, for a typical S-complex albedo, translates into a diameter of 130+-20 m. Our dynamical simulations show that it has likely been an Amor for the past 10^5 yr. Although currently not Earth-crossing, it will likely become so during the period 50 - 100 kyr in the future. It may have arrived from the inner or central Main Belt > 1 Myr ago as a former member of a low-inclination S-class asteroid family. Its relatively slow rotation and large size make it a suitable destination for a human mission. We show that ballistic Earth-190491-Earth transfer trajectories with Delta-V < 2 km s^-1 at the asteroid exist between 2052 and 2061.Comment: 2 Tables, 11 Figures, accepted for publication in Astronomy & Astrophysic

    Ground-based monitoring of comet 67P/Churyumov-Gerasimenko gas activity throughout the <i>Rosetta</i> mission

    Get PDF
    Simultaneously to the ESA Rosetta mission, a world-wide ground-based campaign provided measurements of the large scale activity of comet 67P/Churyumov-Gerasimenko through measurement of optically active gas species and imaging of the overall dust coma. We present more than two years of observations performed with the FORS2 low resolution spectrograph at the VLT, TRAPPIST, and ACAM at the WHT. We focus on the evolution of the CN production, as a tracer of the comet activity. We find that it is asymmetric with respect to perihelion and different from that of the dust. The CN emission is detected for the first time at 1.34 au pre-perihelion and production rates then increase steeply to peak about two weeks after perihelion at (1.00±0.10) ×1025 molecules s−1, while the post-perihelion decrease is more shallow. The evolution of the comet activity is strongly influenced by seasonal effects, with enhanced CN production when the Southern hemisphere is illuminated

    Sputtering of Oxygen Ice by Low Energy Ions

    Get PDF
    Naturally occurring ices lie on both interstellar dust grains and on celestial objects, such as those in the outer solar system. These ices are continu- ously subjected to irradiation by ions from the solar wind and/or cosmic rays, which modify their surfaces. As a result, new molecular species may form which can be sputtered off into space or planetary atmospheres. We determined the experimental values of sputtering yields for irradiation of oxygen ice at 10 K by singly (He+, C+, N+, O+ and Ar+) and doubly (C2+, N2+ and O2+) charged ions with 4 keV kinetic energy. In these laboratory experiments, oxygen ice was deposited and irradiated by ions in an ultra high vacuum chamber at low temperature to simulate the environment of space. The number of molecules removed by sputtering was observed by measurement of the ice thickness using laser interferometry. Preliminary mass spectra were taken of sputtered species and of molecules formed in the ice by temperature programmed desorption (TPD). We find that the experimental sputtering yields increase approximately linearly with the projectile ion mass (or momentum squared) for all ions studied. No difference was found between the sputtering yield for singly and doubly charged ions of the same atom within the experimental uncertainty, as expected for a process dominated by momentum transfer. The experimental sputter yields are in good agreement with values calculated using a theoretical model except in the case of oxygen ions. Preliminary studies have shown molecular oxygen as the dominant species sputtered and TPD measurements indicate ozone formation.Comment: to be published in Surface Science (2015

    Clergy Interest in Innovative Collaboration with Psychologists

    Full text link
    What forms of innovative collaboration are possible between clergy and psychologists? A total of 117 clergypersons (63% response rate) rated 6 scenarios of collaboration, indicating their level of interest and the extent to which they would like to remain involved with the psychologist. The scenarios were derived from two categories of collaboration articulated by in previous research: mental health services and enhancing parish life. Overall, clergy expressed relatively modest levels of interest in innovative collaboration, though they were somewhat interested in mental health consultation services. Many clergy refer troubled parishioners to clinical or counseling psychologists for treatment, but appear less interested in more innovative forms of collaboration

    Correlation between microstructure and magnetotransport in organic semiconductor spin valve structures

    Full text link
    We have studied magnetotransport in organic-inorganic hybrid multilayer junctions. In these devices, the organic semiconductor (OSC) Alq3_3 (tris(8-hydroxyquinoline) aluminum) formed a spacer layer between ferromagnetic (FM) Co and Fe layers. The thickness of the Alq3_3 layer was in the range of 50-150 nm. Positive magnetoresistance (MR) was observed at 4.2 K in a current perpendicular to plane geometry, and these effects persisted up to room temperature. The devices' microstructure was studied by X-ray reflectometry, Auger electron spectroscopy and polarized neutron reflectometry (PNR). The films show well-defined layers with modest average chemical roughness (3-5 nm) at the interface between the Alq3_3 and the surrounding FM layers. Reflectometry shows that larger MR effects are associated with smaller FM/Alq3_3 interface width (both chemical and magnetic) and a magnetically dead layer at the Alq3_3/Fe interface. The PNR data also show that the Co layer, which was deposited on top of the Alq3_3, adopts a multi-domain magnetic structure at low field and a perfect anti-parallel state is not obtained. The origins of the observed MR are discussed and attributed to spin coherent transport. A lower bound for the spin diffusion length in Alq3_3 was estimated as 43±543 \pm 5 nm at 80 K. However, the subtle correlations between microstructure and magnetotransport indicate the importance of interfacial effects in these systems.Comment: 21 pages, 11 figures and 2 table

    Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua

    Get PDF
    During the formation and evolution of the Solar System, significant numbers of cometary and asteroidal bodies were ejected into interstellar space. It is reasonable to expect that the same happened for planetary systems other than our own. Detection of such interstellar objects would allow us to probe the planetesimal formation processes around other stars, possibly together with the effects of long-term exposure to the interstellar medium. 1I/2017 U1 ‘Oumuamua is the first known interstellar object, discovered by the Pan-STARRS1 telescope in October 2017. The discovery epoch photometry implies a highly elongated body with radii of ~ 200 × 20 m when a comet-like geometric albedo of 0.04 is assumed. The observable interstellar object population is expected to be dominated by comet-like bodies in agreement with our spectra, yet the reported inactivity of 'Oumuamua implies a lack of surface ice. Here, we report spectroscopic characterization of ‘Oumuamua, finding it to be variable with time but similar to organically rich surfaces found in the outer Solar System. We show that this is consistent with predictions of an insulating mantle produced by long-term cosmic ray exposure. An internal icy composition cannot therefore be ruled out by the lack of activity, even though ‘Oumuamua passed within 0.25 au of the Sun
    corecore