112 research outputs found
Does Telehealth Monitoring Identify Exacerbations of Chronic Obstructive Pulmonary Disease and Reduce Hospitalisations? An Analysis of System Data
Background: The increasing prevalence and associated cost of treating chronic obstructive pulmonary disease (COPD) is unsustainable. Health care organizations are focusing on ways to support self-management and prevent hospital admissions, including telehealth-monitoring services capturing physiological and health status data. This paper reports on data captured during a pilot randomized controlled trial of telehealth-supported care within a community-based service for patients discharged from hospital following an exacerbation of their COPD. Objective: The aim was to undertake the first analysis of system data to determine whether telehealth monitoring can identify an exacerbation of COPD, providing clinicians with an opportunity to intervene with timely treatment and prevent hospital readmission. Methods: A total of 23 participants received a telehealth-supported intervention. This paper reports on the analysis of data from a telehealth monitoring system that captured data from two sources: (1) data uploaded both manually and using Bluetooth peripheral devices by the 23 participants and (2) clinical records entered as nursing notes by the clinicians. Rules embedded in the telehealth monitoring system triggered system alerts to be reviewed by remote clinicians who determined whether clinical intervention was required. We also analyzed data on the frequency and length (bed days) of hospital admissions, frequency of hospital Accident and Emergency visits that did not lead to hospital admission, and frequency and type of community health care service contacts—other than the COPD discharge service—for all participants for the duration of the intervention and 6 months postintervention. Results: Patients generated 512 alerts, 451 of which occurred during the first 42 days that all participants used the equipment. Patients generated fewer alerts over time with typically seven alerts per day within the first 10 days and four alerts per day thereafter. They also had three times more days without alerts than with alerts. Alerts were most commonly triggered by reports of being more tired, having difficulty with self-care, and blood pressure being out of range. During the 8-week intervention, and for 6-month follow-up, eight of the 23 patients were hospitalized. Hospital readmission rates (2/23, 9%) in the first 28 days of service were lower than the 20% UK norm. Conclusions: It seems that the clinical team can identify exacerbations based on both an increase in alerts and the types of system-generated alerts as evidenced by their efforts to provided treatment interventions. There was some indication that telehealth monitoring potentially delayed hospitalizations until after patients had been discharged from the service. We suggest that telehealth-supported care can fulfill an important role in enabling patients with COPD to better manage their condition and remain out of hospital, but adequate resourcing and timely response to alerts is a critical factor in supporting patients to remain at home
Biotic and abiotic retention, recycling and remineralization of metals in the ocean
Trace metals shape both the biogeochemical functioning and biological structure of oceanic provinces. Trace metal biogeochemistry has primarily focused on modes of external supply of metals from aeolian, hydrothermal, sedimentary and other sources. However, metals also undergo internal transformations such as abiotic and biotic retention, recycling and remineralization. The role of these internal transformations in metal biogeochemical cycling is now coming into focus. First, the retention of metals by biota in the surface ocean for days, weeks or months depends on taxon-specific metal requirements of phytoplankton, and on their ultimate fate: that is, viral lysis, senescence, grazing and/or export to depth. Rapid recycling of metals in the surface ocean can extend seasonal productivity by maintaining higher levels of metal bioavailability compared to the influence of external metal input alone. As metal-containing organic particles are exported from the surface ocean, different metals exhibit distinct patterns of remineralization with depth. These patterns are mediated by a wide range of physicochemical and microbial processes such as the ability of particles to sorb metals, and are influenced by the mineral and organic characteristics of sinking particles. We conclude that internal metal transformations play an essential role in controlling metal bioavailability, phytoplankton distributions and the subsurface resupply of metals
Use of humanised rat basophilic leukaemia cell line RS-ATL8 for the assessment of allergenicity of Schistosoma mansoni proteins.
BACKGROUND
Parasite-specific IgE is thought to correlate with protection against Schistosoma mansoni infection or re-infection. Only a few molecular targets of the IgE response in S. mansoni infection have been characterised. A better insight into the basic mechanisms of anti-parasite immunity could be gained from a genome-wide characterisation of such S. mansoni allergens. This would have repercussions on our understanding of allergy and the development of safe and efficacious vaccinations against helminthic parasites.
METHODOLOGY/PRINCIPAL FINDINGS
A complete medium- to high-throughput amenable workflow, including important quality controls, is described, which enables the rapid translation of S. mansoni proteins using wheat germ lysate and subsequent assessment of potential allergenicity with a humanised Rat Basophilic Leukemia (RBL) reporter cell line. Cell-free translation is completed within 90 minutes, generating sufficient amounts of parasitic protein for rapid screening of allergenicity without any need for purification. Antigenic integrity is demonstrated using Western Blotting. After overnight incubation with infected individuals' serum, the RS-ATL8 reporter cell line is challenged with the complete wheat germ translation mixture and Luciferase activity measured, reporting cellular activation by the suspected allergen. The suitability of this system for characterization of novel S. mansoni allergens is demonstrated using well characterised plant and parasitic allergens such as Par j 2, SmTAL-1 and the IgE binding factor IPSE/alpha-1, expressed in wheat germ lysates and/or E. coli. SmTAL-1, but not SmTAL2 (used as a negative control), was able to activate the basophil reporter cell line.
CONCLUSION/SIGNIFICANCE
This method offers an accessible way for assessment of potential allergenicity of anti-helminthic vaccine candidates and is suitable for medium- to high-throughput studies using infected individual sera. It is also suitable for the study of the basis of allergenicity of helminthic proteins
Influence of Exposure History on the Immunology and Development of Resistance to Human Schistosomiasis Mansoni
Schistosomiasis is a parasitic blood fluke infection of 200 million people worldwide. We have shown that humans can acquire immunity to reinfection after repeated exposures and cures with the drug praziquantel. The increase in resistance to reinfection was associated with an increase in schistosome-specific IgE. The ability to develop resistance and the rate at which resistance was acquired varied greatly in two cohorts of men within close geographic proximity and with similar occupational exposures to schistosomes. These differences are likely attributable to differences in history of exposure to Schistosoma mansoni infection and immunologic status at baseline, with those acquiring immunity faster having lifelong S. mansoni exposure and immunologic evidence of chronic S. mansoni infection. As many conflicting results have been reported in the literature regarding immunologic parameters associated with the development of resistance to schistosome infection, exposure history and prior immune status should be considered in the design of future immuno-epidemiologic studies
An overview of conservative treatment options for diabetic Charcot foot neuroarthropathy
Conservative management of Charcot foot neuroarthropathy remains efficacious for certain clinical scenarios. Treatment of the patient should take into account the stage of the Charcot neuroarthopathy, site(s) of involvement, presence or absence of ulceration, presence or absence of infection, overall medical status, and level of compliance. The authors present an overview of evidence-based non-operative treatment for diabetic Charcot neuroarthropathy with an emphasis on the most recent developments in therapy
Schistosoma mansoni Venom Allergen Like Proteins Present Differential Allergic Responses in a Murine Model of Airway Inflammation
The Schistosoma mansoni Venom Allergen Like proteins (SmVALs) have been identified in the Transcriptome and Post-Genomic studies as targets for immune interventions. Two secreted members of the family were obtained as recombinant proteins in the native conformation. Antibodies produced against them showed that SmVAL4 was present mostly in cercarial secretions and SmVAL26 in egg secretions and that only the native SmVAL4 contained carbohydrate moieties. Due to concerns with potential allergic characteristics of this class of molecules, we have explored the mouse model of airway inflammation in order to investigate these properties in a more confined system. Sensitization and challenge with rSmVAL4, but not rSmVAL26, induced extensive migration of cells to the lungs, mostly eosinophils and macrophages; moreover, immunological parameters were also characteristic of an allergic inflammatory response. Our results showed that the allergic potential of this class of proteins can be variable and that the vaccine candidates should be characterized; the mouse model of airway inflammation can be useful to evaluate these properties
Proteomic Identification of IPSE/alpha-1 as a Major Hepatotoxin Secreted by Schistosoma mansoni Eggs
The flatworm disease, schistosomiasis, is a major public health problem in sub-Saharan Africa, South America and East Asia. A hallmark of infection with Schistosoma mansoni is the immune response to parasite eggs trapped in the liver and other organs. This response involves an infiltration of cells that surround the parasite egg forming a “granuloma.” In mice deprived of T-cells, this granulomatous response is lacking, and toxic products released by eggs quickly cause liver damage and death. Thus the granulomata protect the host from toxic egg products. Only one hepatotoxic molecule, omega-1, has been described to date. We set out to identify other S. mansoni egg hepatotoxins using liver cells grown in culture. We first showed that live eggs, their secretions, and pure omega-1 are toxic. Using a physical separation technique to prepare fractions from whole egg secretions, we identified the presence of IPSE/alpha-1, a protein that is known to strongly influence the immune system. We showed that IPSE/alpha-1 is also hepatotoxic, and that toxicity of both omega-1 and IPSE/alpha-1 can be prevented by first mixing the proteins with specific neutralizing antibodies. Both proteins constitute the majority of hepatotoxicity released by eggs
Home and health in people ageing with Parkinson’s disease: study protocol for a prospective longitudinal cohort survey study
- …
