239 research outputs found

    Process

    Get PDF
    Flexible, Versatile, Curious, Experienced, Informed, Explorative. These things, and many others, describe an effective, efficient and skilled designer. I try to be all of them. My design studies have been focused in three main areas: exploration, education and communication. The creative process is not a singular process, but rather a conglomeration of many varied processes. Some processes are not applicable to every design problem, but some are

    Investigation of active tracking for robotic arm assisted magnetic resonance guided focused ultrasound ablation

    Get PDF
    Background: Focused ultrasound surgery (FUS) is a technique that does not need invasive access to the patient while allowing precise targeted therapy. Magnetic resonance (MR) guided FUS provides capabilities for monitoring treatments. Considering that the targeted tumours are distributed at different positions, focus repositioning becomes necessary.Methods: We used an MR compatible robot to increase the operational range of FUS application. Active tracking was developed to detect the robotic arm in regards to the MR coordinate system. The purpose of this study was to construct active tracking to allow a wide spatial range of repositioning the FUS transducer that is fast and accurate. The technique was characterised and validated by a series of positioning tests to prove its efficiency for guiding the robot.Results: In the calibration range, the tracking could achieve an accuracy of RMS=0.63 mm. Results of phantom ablation showed a focal scanning precision of Δx=0.4±0.37 mm, Δy=0.4±0.28 mm and Δz=0.7±0.66 mm.Conclusions: The active tracking localisation can be considered as a feasible approach for the MR guided FUS system positioned by a robot

    In vivo Dual Substrate Bioluminescent Imaging

    Get PDF
    Our understanding of how and when breast cancer cells transit from established primary tumors to metastatic sites has increased at an exceptional rate since the advent of in vivo bioluminescent imaging technologies 1-3. Indeed, the ability to locate and quantify tumor growth longitudinally in a single cohort of animals to completion of the study as opposed to sacrificing individual groups of animals at specific assay times has revolutionized how researchers investigate breast cancer metastasis. Unfortunately, current methodologies preclude the real-time assessment of critical changes that transpire in cell signaling systems as breast cancer cells (i) evolve within primary tumors, (ii) disseminate throughout the body, and (iii) reinitiate proliferative programs at sites of a metastatic lesion. However, recent advancements in bioluminescent imaging now make it possible to simultaneously quantify specific spatiotemporal changes in gene expression as a function of tumor development and metastatic progression via the use of dual substrate luminescence reactions. To do so, researchers take advantage for two light-producing luciferase enzymes isolated from the firefly (Photinus pyralis) and sea pansy (Renilla reniformis), both of which react to mutually exclusive substrates that previously facilitated their wide-spread use in in vitro cell-based reporter gene assays 4. Here we demonstrate the in vivo utility of these two enzymes such that one luminescence reaction specifically marks the size and location of a developing tumor, while the second luminescent reaction serves as a means to visualize the activation status of specific signaling systems during distinct stages of tumor and metastasis development. Thus, the objectives of this study are two-fold. First, we will describe the steps necessary to construct dual bioluminescent reporter cell lines, as well as those needed to facilitate their use in visualizing the spatiotemporal regulation of gene expression during specific steps of the metastatic cascade. Using the 4T1 model of breast cancer metastasis, we show that the in vivo activity of a synthetic Smad Binding Element (SBE) promoter was decreased dramatically in pulmonary metastasis as compared to that measured in the primary tumor 4-6. Recently, breast cancer metastasis was shown to be regulated by changes within the primary tumor microenvironment and reactive stroma, including those occurring in fibroblasts and infiltrating immune cells 7-9. Thus, our second objective will be to demonstrate the utility of dual bioluminescent techniques in monitoring the growth and localization of two unique cell populations harbored within a single animal during breast cancer growth and metastasis

    Exercise Training Rapidly Increases Hepatic Insulin Extraction in NAFLD

    Get PDF
    Purpose We aimed to determine the immediacy of exercise intervention on liver-specific metabolic processes in nonalcoholic fatty liver disease. Methods We undertook a short-term (7-d) exercise training study (60 min·d-1 treadmill walking at 80%-85% of maximal heart rate) in obese adults (N = 13, 58 ± 3 yr, 34.3 ± 1.1 kg·m-2, \u3e5% hepatic lipid by 1H-magnetic resonance spectroscopy). Insulin sensitivity index was estimated by oral glucose tolerance test using the Soonthorpun model. Hepatic insulin extraction (HIE) was calculated as the molar difference in area under the curve (AUC) for insulin and C-peptide (HIE = 1-(AUCInsulin/AUCC-Pep)). Results The increases in HIE, V&O2max, and insulin sensitivity index after the intervention were 9.8%, 9.8%, and 34%, respectively (all, P \u3c 0.05). Basal fat oxidation increased (pre: 47 ± 6 mg·min-1 vs post: 65 ± 6 mg·min-1, P \u3c 0.05) and carbohydrate oxidation decreased (pre: 160 ± 20 mg·min-1 vs post: 112 ± 15 mg·min-1, P \u3c 0.05) with exercise training. After the intervention, HIE correlated positively with adiponectin (r = 0.56, P \u3c 0.05) and negatively with TNF-α (r =-0.78, P \u3c 0.001). Conclusions By increasing HIE along with peripheral insulin sensitivity, aerobic exercise training rapidly reverses some of the underlying physiological mechanisms associated with nonalcoholic fatty liver disease, in a weight loss-independent manner. This reversal could potentially act through adipokine-related pathways

    β-Hydroxybutyrate is reduced in humans with obesity-related NAFLD and displays a dose-dependent effect on skeletal muscle mitochondrial respiration in vitro

    Get PDF
    β-Hydroxybutyrate is reduced in humans with obesity-related NAFLD and displays a dose-dependent effect on skeletal muscle mitochondrial respiration in vitro. Am J Physiol Endocrinol Metab 319: E187-E195, 2020. First published May 12, 2020; doi:10.1152/ajpendo.00058.2020.-Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic fat accumulation and impaired insulin sensitivity. Reduced hepatic ketogenesis may promote these pathologies, but data are inconclusive in humans and the link between NAFLD and reduced insulin sensitivity remains obscure. We investigated individuals with obesity-related NAFLD and hypothesized that β-hydroxybutyrate (βOHB; the predominant ketone species) would be reduced and related to hepatic fat accumulation and insulin sensitivity. Furthermore, we hypothesized that ketones would impact skeletal muscle mitochondrial respiration in vitro. Hepatic fat was assessed by 1H-MRS in 22 participants in a parallel design, case control study [Control: N = 7, age 50 ± 6 yr, body mass index (BMI) 30 ± 1 kg/m2; NAFLD: N = 15, age 57 ± 3 yr, BMI 35 ± 1 kg/m2]. Plasma assessments were conducted in the fasted state. Whole body insulin sensitivity was determined by the gold-standard hyperinsulinemic-euglycemic clamp. The effect of ketone dose (0.5-5.0 mM) on mitochondrial respiration was conducted in human skeletal muscle cell culture. Fasting βOHB, a surrogate measure of hepatic ketogenesis, was reduced in NAFLD (-15.6%, P \u3c 0.01) and correlated negatively with liver fat (r2 = 0.21, P = 0.03) and positively with insulin sensitivity (r2 = 0.30, P = 0.01). Skeletal muscle mitochondrial oxygen consumption increased with low-dose ketones, attributable to increases in basal respiration (135%, P \u3c 0.05) and ATP-linked oxygen consumption (136%, P \u3c 0.05). NAFLD pathophysiology includes impaired hepatic ketogenesis, which is associated with hepatic fat accumulation and impaired insulin sensitivity. This reduced capacity to produce ketones may be a potential link between NAFLD and NAFLD-associated reductions in whole body insulin sensitivity, whereby ketone concentrations impact skeletal muscle mitochondrial respiration

    3D MR Fingerprinting for Dynamic Contrast-Enhanced Imaging of Whole Mouse Brain

    Get PDF
    Purpose: Quantitative MRI enables direct quantification of contrast agent concentrations in contrast-enhanced scans. However, the lengthy scan times required by conventional methods are inadequate for tracking contrast agent transport dynamically in mouse brain. We developed a 3D MR fingerprinting (MRF) method for simultaneous T1 and T2 mapping across the whole mouse brain with 4.3-min temporal resolution. Method: We designed a 3D MRF sequence with variable acquisition segment lengths and magnetization preparations on a 9.4T preclinical MRI scanner. Model-based reconstruction approaches were employed to improve the accuracy and speed of MRF acquisition. The method\u27s accuracy for T1 and T2 measurements was validated in vitro, while its repeatability of T1 and T2 measurements was evaluated in vivo (n = 3). The utility of the 3D MRF sequence for dynamic tracking of intracisternally infused gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) in the whole mouse brain was demonstrated (n = 5). Results: Phantom studies confirmed accurate T1 and T2 measurements by 3D MRF with an undersampling factor of up to 48. Dynamic contrast-enhanced MRF scans achieved a spatial resolution of 192 × 192 × 500 μm3 and a temporal resolution of 4.3 min, allowing for the analysis and comparison of dynamic changes in concentration and transport kinetics of intracisternally infused Gd-DTPA across brain regions. The sequence also enabled highly repeatable, high-resolution T1 and T2 mapping of the whole mouse brain (192 × 192 × 250 μm3) in 30 min. Conclusion: We present the first dynamic and multi-parametric approach for quantitatively tracking contrast agent transport in the mouse brain using 3D MRF

    Motion robust MR fingerprinting scan to image neonates with prenatal opioid exposure

    Full text link
    Background: A noninvasive and sensitive imaging tool is needed to assess the fast-evolving baby brain. However, using MRI to study non-sedated babies faces roadblocks, including high scan failure rates due to subjects motion and the lack of quantitative measures for assessing potential developmental delays. This feasibility study explores whether MR Fingerprinting scans can provide motion-robust and quantitative brain tissue measurements for non-sedated infants with prenatal opioid exposure, presenting a viable alternative to clinical MR scans. Assessment: MRF image quality was compared to pediatric MRI scans using a fully crossed, multiple reader multiple case study. The quantitative T1 and T2 values were used to assess brain tissue changes between babies younger than one month and babies between one and two months. Statistical Tests: Generalized estimating equations (GEE) model was performed to test the significant difference of the T1 and T2 values from eight white matter regions of babies under one month and those are older. MRI and MRF image quality were assessed using Gwets second order auto-correlation coefficient (AC2) with its confidence levels. We used the Cochran-Mantel-Haenszel test to assess the difference in proportions between MRF and MRI for all features and stratified by the type of features. Results: In infants under one month of age, the T1 and T2 values are significantly higher (p<0.005) compared to those between one and two months. A multiple-reader and multiple-case study showed superior image quality ratings in anatomical features from the MRF images than the MRI images. Conclusions: This study suggested that the MR Fingerprinting scans offer a motion-robust and efficient method for non-sedated infants, delivering superior image quality than clinical MRI scans and additionally providing quantitative measures to assess brain development

    Protein Tyrosine Phosphatase Receptor δ Serves As the Orexigenic Asprosin Receptor

    Get PDF
    Asprosin is a fasting-induced glucogenic and centrally acting orexigenic hormone. The olfactory receptor Olfr734 is known to be the hepatic receptor for asprosin that mediates its effects on glucose production, but the receptor for asprosin\u27s orexigenic function has been unclear. Here, we have identified protein tyrosine phosphatase receptor δ (Ptprd) as the orexigenic receptor for asprosin. Asprosin functions as a high-affinity Ptprd ligand in hypothalamic AgRP neurons, regulating the activity of this circuit in a cell-autonomous manner. Genetic ablation of Ptprd results in a strong loss of appetite, leanness, and an inability to respond to the orexigenic effects of asprosin. Ablation of Ptprd specifically in AgRP neurons causes resistance to diet-induced obesity. Introduction of the soluble Ptprd ligand-binding domain in the circulation of mice suppresses appetite and blood glucose levels by sequestering plasma asprosin. Identification of Ptprd as the orexigenic asprosin receptor creates a new avenue for the development of anti-obesity therapeutics

    Dual MET–EGFR combinatorial inhibition against T790M-EGFR-mediated erlotinib-resistant lung cancer

    Get PDF
    Despite clinical approval of erlotinib, most advanced lung cancer patients are primary non-responders. Initial responders invariably develop secondary resistance, which can be accounted for by T790M-EGFR mutation in half of the relapses. We show that MET is highly expressed in lung cancer, often concomitantly with epidermal growth factor receptor (EGFR), including H1975 cell line. The erlotinib-resistant lung cancer cell line H1975, which expresses L858R/T790M-EGFR in-cis, was used to test for the effect of MET inhibition using the small molecule inhibitor SU11274. H1975 cells express wild-type MET, without genomic amplification (CNV=1.1). At 2 μM, SU11274 had significant in vitro pro-apoptotic effect in H1975 cells, 3.9-fold (P=0.0015) higher than erlotinib, but had no effect on the MET and EGFR-negative H520 cells. In vivo, SU11274 also induced significant tumour cytoreduction in H1975 murine xenografts in our bioluminescence molecular imaging assay. Using small-animal microPET/MRI, SU11274 treatment was found to induce an early tumour metabolic response in H1975 tumour xenografts. MET and EGFR pathways were found to exhibit collaborative signalling with receptor cross-activation, which had different patterns between wild type (A549) and L858R/T790M-EGFR (H1975). SU11274 plus erlotinib/CL-387,785 potentiated MET inhibition of downstream cell proliferative survival signalling. Knockdown studies in H1975 cells using siRNA against MET alone, EGFR alone, or both, confirmed the enhanced downstream inhibition with dual MET–EGFR signal path inhibition. Finally, in our time-lapse video-microscopy and in vivo multimodal molecular imaging studies, dual SU11274-erlotinib concurrent treatment effectively inhibited H1975 cells with enhanced abrogation of cytoskeletal functions and complete regression of the xenograft growth. Together, our results suggest that MET-based targeted inhibition using small-molecule MET inhibitor can be a potential treatment strategy for T790M-EGFR-mediated erlotinib-resistant non-small-cell lung cancer. Furthermore, optimised inhibition may be further achieved with MET inhibition in combination with erlotinib or an irreversible EGFR-TKI

    MR fluoroscopy in vascular and cardiac interventions (review)

    Get PDF
    Vascular and cardiac disease remains a leading cause of morbidity and mortality in developed and emerging countries. Vascular and cardiac interventions require extensive fluoroscopic guidance to navigate endovascular catheters. X-ray fluoroscopy is considered the current modality for real time imaging. It provides excellent spatial and temporal resolution, but is limited by exposure of patients and staff to ionizing radiation, poor soft tissue characterization and lack of quantitative physiologic information. MR fluoroscopy has been introduced with substantial progress during the last decade. Clinical and experimental studies performed under MR fluoroscopy have indicated the suitability of this modality for: delivery of ASD closure, aortic valves, and endovascular stents (aortic, carotid, iliac, renal arteries, inferior vena cava). It aids in performing ablation, creation of hepatic shunts and local delivery of therapies. Development of more MR compatible equipment and devices will widen the applications of MR-guided procedures. At post-intervention, MR imaging aids in assessing the efficacy of therapies, success of interventions. It also provides information on vascular flow and cardiac morphology, function, perfusion and viability. MR fluoroscopy has the potential to form the basis for minimally invasive image–guided surgeries that offer improved patient management and cost effectiveness
    corecore