85 research outputs found

    Effects of a Follow-On Formula Containing Isomaltulose (Palatinose) on Metabolic Response, Acceptance, Tolerance and Safety in Infants: A Randomized-Controlled Trial

    Get PDF
    UNLABELLED:Effects of the dietary glycaemic load on postprandial blood glucose and insulin response might be of importance for fat deposition and risk of obesity. We aimed to investigate the metabolic effects, acceptance and tolerance of a follow-on formula containing the low glycaemic and low insulinaemic carbohydrate isomaltulose replacing high glycaemic maltodextrin. Healthy term infants aged 4 to 8 completed months (n = 50) were randomized to receive the intervention follow-on formula (IF, 2.1g isomaltulose (Palatinose™)/100mL) or an isocaloric conventional formula (CF) providing 2.1g maltodextrin/100mL for four weeks. Plasma insulinaemia 60 min after start of feeding (primary outcome) was not statistically different, while glycaemia adjusted for age and time for drinking/volume of meal 60 min after start of feeding was 122(105,140) mg/dL in IF (median, interquartile range) and 111(100,123) in CF (p = 0.01). Urinary c-peptide:creatinine ratio did not differ (IF:81.5(44.7, 96.0) vs. CF:56.8(37.5, 129),p = 0.43). Urinary c-peptide:creatinine ratio was correlated total intake of energy (R = 0.31,p = 0.045), protein (R = 0.42,p = 0.006) and fat (R = 0.40,p = 0.01) but not with carbohydrate intake (R = 0.22,p = 0.16). Both formulae were well accepted without differences in time of crying, flatulence, stool characteristics and the occurrence of adverse events. The expected lower postprandial plasma insulin and blood glucose level due to replacement of high glycaemic maltodextrin by low glycaemic isomaltulose were not observed in the single time-point blood analysis. In infants aged 4 to 8 completed months fed a liquid formula, peak blood glucose might be reached earlier than 60 min after start of feeding. Non-invasive urinary c-peptide measurements may be a suitable marker of nutritional intake during the previous four days in infants. TRIAL REGISTRATION:ClinicalTrials.gov NCT01627015

    Cytotoxicity effects of metal oxide nanoparticles in human tumor cell lines

    Get PDF
    Metallic and metal oxide nanoparticles (Nps) have a wide range of applications in various settings including household, cosmetics and chemical industries, as well as for coatings. Nevertheless, an in-depth study of the potential toxic effects of these Nps is still needed, in order to fulfill the mandatory requirement of ensuring the safety of workers, patients and the general public. In this study, Quick Cell colorimetric assays were used to evaluate the in vitro toxicity of different metal oxide Nps [Fe(II,III)Ox, TiOx, ZnO and CeO2] in several cell lines. The ZnO Nps were found to be highly toxic, with a lethal dose ≥100 μg/ml for all the cell lines studied. Western blot was also used to test the ability of the different Nps to activate the complement pathway. However, no activation of this cascade was observed when the Nps were added. In addition, the aggregation state and charge of the Nps in culture media was studied by dynamic light scattering (DLS) and measurement of zeta potential. Transmission Electron Microscopy was used to analyze Np uptake and localization at the cellular level

    Targeted T1 Magnetic Resonance Imaging Contrast Enhancement with Extraordinarily Small CoFe2O4 Nanoparticles

    Get PDF
    Extraordinarily small (2.4 nm) cobalt-ferrite nanoparticles (ESCIoNs) were synthesised by a one-pot thermal decomposition approach to study their potential as MRI contrast agents. Fine size control was achieved using oleylamine alone, and annular dark-field scanning transmission electron microscopy revealed highly-crystalline cubic spinel particles with atomic-resolution. Ligand exchange with dimercaptosuccinic acid rendered the particles stable in physiological conditions with a hydrodynamic diameter of ∽12 nm. The particles displayed superparamagnetic properties, and a low r2/ r1 ratio suitable for a T1 contrast agent. The particles were functionalised with bile-acid which improved biocompatibility by significant reduction of reactive oxygen species generation and is a first step towards liver-targeted T1 MRI. Our study demonstrates the potential of ESCIoNs as T1 MRI contrast agents

    Optical bench development for LISA

    Get PDF
    For observation of gravitational waves at frequencies between 30 μHz and 1 Hz, the LISA mission will be implemented in a triangular constellation of three identical spacecraft, which are mutually linked by laser interferometry in an active transponder scheme over a 5 million kilometer arm length. On the end point of each laser link, remote and local beam metrology with respect to inertial proof masses inside the spacecraft is realized by the LISA Optical Bench. It implements further- more various ancillary functions such as point-ahead correction, acquisition sensing, transmit beam conditioning, and laser redundancy switching. A comprehensive design of the Optical Bench has been developed, which includes all of the above mentioned functions and at the same time ensures manufacturability on the basis of hydroxide catalysis bonding, an ultrastable integration technology already perfected in the context of LISA's technology demonstrator mission LISA Pathfinder. Essential elements of this design have been validated by dedicated pre-investigations. These include the demonstration of polarizing heterodyne interferometry at the required Picometer and Nanoradian performance levels, the investigation of potential non-reciprocal noise sources in the so-called backlink fiber, as well as the development of a laser redundancy switch breadboard

    Early-Life Metabolic and Hormonal Markers in Blood and Growth until Age 2 Years:Results from a Randomized Controlled Trial in Healthy Infants Fed a Modified Low-Protein Infant Formula

    Get PDF
    Background: High protein intake in early life is associated with an increased risk of childhood obesity. Dietary protein intake may be a key mechanistic modulator through alterations in endocrine and metabolic responses. Objective: We aimed to determine the impact of different protein intake of infants on blood metabolic and hormonal markers at the age of four months. We further aimed to investigate the association between these markers and anthropometric parameters and body composition until the age of two years. Design: Term infants received a modified low-protein formula (mLP) (1.7 g protein/100 kcal) or a specifically designed control formula (CTRL) (2.1 g protein/100 kcal) until 6 months of age in a double blinded RCT. The outcomes were compared with a breast-fed (BF) group. Glucose, insulin, leptin, IGF-1, IGF-BP1, -BP2, and -BP3 levels were measured at the age of 4 months. Anthropometric parameters and body composition were assessed until the age of 2 years. Groups were compared using linear regression analysis. Results: No significant differences were observed in any of the blood parameters between the formula groups (n = 53 mLP; n = 44 CTRL) despite a significant difference in protein intake. Insulin and HOMA-IR were higher in both formula groups compared to the BF group (n = 36) (p < 0.001). IGF-BP1 was lower in both formula groups compared to the BF group (p < 0.01). We found a lower IGF-BP2 level in the CTRL group compared to the BF group (p < 0.01) and a higher IGF-BP3 level in the mLP group compared to the BF group (p = 0.03). There were no significant differences in glucose, leptin, and IGF-1 between the three feeding groups. We found specific associations of all early-life metabolic and hormonal blood parameters with long-term growth and body composition except for IGF-1. Conclusions: Reducing protein intake by 20% did not result in a different metabolic profile in formula-fed infants at 4 months of age. Formula-fed infants had a lower insulin sensitivity compared to breast-fed infants. We found associations between all metabolic and hormonal markers (except for IGF-1) determined at age 4 months and growth and body composition up to two years of age

    Testing the GRACE follow-on triple mirror assembly

    No full text
    We report on the successful testing of the GRACE follow-on triple mirror assembly (TMA) prototype. This component serves to route the laser beam in a proposed follow-on mission to the Gravity Recovery and Climate Explorer (GRACE) mission, containing an optical instrument for space-based distance measurement between satellites. As part of this, the TMA has to meet a set of stringent requirements on both the optical and mechanical properties. The purpose of the TMA prototype testing is to establish the feasibility of the design, materials choice and fabrication techniques. Here we report on co-alignment testing of this device to the arc second (5 μrad) level and thermal alignment stability testing to 1 μ rad {{K}-1}
    corecore