7,858 research outputs found

    The improvement of zinc electrodes for electrochemical cells Quarterly report no. 2, Sep. 4 - Dec. 4, 1965

    Get PDF
    Growth parameters of mossy and crystalline dendrites applied to manufacture and handling of silver-zinc batterie

    Improved alkaline electrochemical cell

    Get PDF
    Addition of lead ions to electrolyte suppresses zinc dendrite formation during charging cycle. A soluble lead salt can be added directly or metallic lead can be incorporated in the zinc electrode and allowed to dissolve into the electrolyte

    Nonlinear Dynamics of Composite Fermions in Nanostructures

    Full text link
    We outline a theory describing the quasi-classical dynamics of composite fermions in the fractional quantum Hall regime in the potentials of arbitrary nanostructures. By an appropriate parametrization of time we show that their trajectories are independent of their mass and dispersion. This allows to study the dynamics in terms of an effective Hamiltonian although the actual dispersion is as yet unknown. The applicability of the theory is verified in the case of antidot arrays where it explains details of magnetoresistance measurements and thus confirms the existence of these quasiparticles.Comment: submitted to Europhys. Lett., 4 pages, postscrip

    The possibility of a metal insulator transition in antidot arrays induced by an external driving

    Full text link
    It is shown that a family of models associated with the kicked Harper model is relevant for cyclotron resonance experiments in an antidot array. For this purpose a simplified model for electronic motion in a related model system in presence of a magnetic field and an AC electric field is developed. In the limit of strong magnetic field it reduces to a model similar to the kicked Harper model. This model is studied numerically and is found to be extremely sensitive to the strength of the electric field. In particular, as the strength of the electric field is varied a metal -- insulator transition may be found. The experimental conditions required for this transition are discussed.Comment: 6 files: kharp.tex, fig1.ps fig2.ps fi3.ps fig4.ps fig5.p

    On the generalized Davenport constant and the Noether number

    Full text link
    Known results on the generalized Davenport constant related to zero-sum sequences over a finite abelian group are extended to the generalized Noether number related to the rings of polynomial invariants of an arbitrary finite group. An improved general upper bound is given on the degrees of polynomial invariants of a non-cyclic finite group which cut out the zero vector.Comment: 14 page

    Perfectly Translating Lattices on a Cylinder

    Full text link
    We perform molecular dynamics simulations on an interacting electron gas confined to a cylindrical surface and subject to a radial magnetic field and the field of the positive background. In order to study the system at lowest energy states that still carry a current, initial configurations are obtained by a special quenching procedure. We observe the formation of a steady state in which the entire electron-lattice cycles with a common uniform velocity. Certain runs show an intermediate instability leading to lattice rearrangements. A Hall resistance can be defined and depends linearly on the magnetic field with an anomalous coefficient reflecting the manybody contributions peculiar to two dimensions.Comment: 13 pages, 5 figure

    Aerobic biodegradation of chiral phenoxyalkanoic acid derivatives during incubations with activated sludge

    Get PDF
    The aerobic biodegradation of racemic mixtures of five chiral phenoxyalkanoic acids was studied according to a biodegradation test that was complemented with enantiomer-specific analysis. Both enantiomers of (RS)-2-phenoxypropanoic acid, (RS)-2-(3-chlorophenoxy)propanoic acid, and (RS)-2-(4-chlorophenoxy)propanoic acid, were completely degraded within 25 days when aerobically incubated with activated sludge. During incubations of (RS)-2-phenoxypropanoic acid, the (R) enantiomer was degraded before the (S) enantiomer, whereas during incubations of (RS)-2-(3-chlorophenoxy)propanoic acid the (S) enantiomer was preferentially degraded. The (R) enantiomer of (RS)-2-(2-chlorophenoxy)propanoic acid was removed after 24 days while only 30% of the (S) enantiomer was degraded within 47 days of incubation. (RS)-2-(2,4,5-Trichlorophenoxy)propanoic acid was the most persistent of all the racemic mixtures tested. After 47 days, the concentration of the (S) enantiomer was nearly unchanged, and the concentration of (R)-2-(2,4,5-trichlorophenoxy)propanoic acid had decreased only by about 40%. The differences observed in the length of the lag phases and in the degradation rates of individual enantiomers can lead to accumulations of the more recalcitrant enantiomer in aquatic or terrestrial ecosystem

    Concepts, Design and Implementation of the ATLAS New Tracking (NEWT)

    Get PDF
    The track reconstruction of modern high energy physics experiments is a very complex task that puts stringent requirements onto the software realisation. The ATLAS track reconstruction software has been in the past dominated by a collection of individual packages, each of which incorporating a different intrinsic event data model, different data flow sequences and calibration data. Invoked by the Final Report of the Reconstruction Task Force, the ATLAS track reconstruction has undergone a major design revolution to ensure maintainability during the long lifetime of the ATLAS experiment and the flexibility needed for the startup phase. The entire software chain has been re-organised in modular components and a common Event Data Model has been deployed during the last three years. A complete new track reconstruction that concentrates on common tools aimed to be used by both ATLAS tracking devices, the Inner Detector and the Muon System, has been established. It has been already used during many large scale tests with data from Monte Carlo simulation and from detector commissioning projects such as the combined test beam 2004 and cosmic ray events. This document concentrates on the technical and conceptual details of the newly developed track reconstruction, also known as New Tracking

    Free particle scattering off two oscillating disks

    Full text link
    We investigate the two-dimensional classical dynamics of the scattering of point particles by two periodically oscillating disks. The dynamics exhibits regular and chaotic scattering properties, as a function of the initial conditions and parameter values of the system. The energy is not conserved since the particles can gain and loose energy from the collisions with the disks. We find that for incident particles whose velocity is on the order of the oscillating disk velocity, the energy of the exiting particles displays non-monotonic gaps of allowed energies, and the distribution of exiting particle velocities shows significant fluctuations in the low energy regime. We also considered the case when the initial velocity distribution is Gaussian, and found that for high energies the exit velocity distribution is Gaussian with the same mean and variance. When the initial particle velocities are in the irregular regime the exit velocity distribution is Gaussian but with a smaller mean and variance. The latter result can be understood as an example of stochastic cooling. In the intermediate regime the exit velocity distribution differs significantly from Gaussian. A comparison of the results presented in this paper to previous chaotic static scattering problems is also discussed.Comment: 9 doble sided pages 13 Postscript figures, REVTEX style. To appear in Phys. Rev.
    corecore