1,453 research outputs found
Potential changes in disease patterns and pharmaceutical use in response to climate change
This is the final version of the article. Available from Taylor & Francis via the DOI in this record.As climate change alters environmental conditions, the incidence and global patterns of human diseases are changing. These modifications to disease profiles and the effects upon human pharmaceutical usage are discussed. Climate-related environmental changes are associated with a rise in the incidence of chronic diseases already prevalent in the Northern Hemisphere, for example, cardiovascular disease and mental illness, leading to greater use of associated heavily used Western medications. Sufferers of respiratory diseases may exhibit exacerbated symptoms due to altered environmental conditions (e.g., pollen). Respiratory, water-borne, and food-borne toxicants and infections, including those that are vector borne, may become more common in Western countries, central and eastern Asia, and across North America. As new disease threats emerge, substantially higher pharmaceutical use appears inevitable, especially of pharmaceuticals not commonly employed at present (e.g., antiprotozoals). The use of medications for the treatment of general symptoms (e.g., analgesics) will also rise. These developments need to be viewed in the context of other major environmental changes (e.g., industrial chemical pollution, biodiversity loss, reduced water and food security) as well as marked shifts in human demographics, including aging of the population. To identify, prevent, mitigate, and adapt to potential threats, one needs to be aware of the major factors underlying changes in the use of pharmaceuticals and their subsequent release, deliberately or unintentionally, into the environment. This review explores the likely consequences of climate change upon the use of medical pharmaceuticals in the Northern Hemisphere.The European Centre for Environment and Human Health (part of the University of Exeter Medical School) is partly financed by the European Regional Development Fund Programme 2007 to 2013 and European Social Fund Convergence Programme for Cornwall and the Isles of Scilly
Leptoproduction of J/psi
We study leptoproduction of at large within the
nonrelativistic QCD (NRQCD) factorization formalism. The cross section is
dominated by color-octet terms that are of order . The color-singlet
term, which is of order , is shown to be a small contribution to
the total cross section. We also calculate the tree diagrams for color-octet
production at order in a region of phase space where there is no
leading color-octet contribution. We find that in this regime the color-singlet
contribution dominates. We argue that non-perturbative corrections arising from
diffractive leptoproduction, higher twist effects, and higher order terms in
the NRQCD velocity expansion should be suppressed as is increased.
Therefore, the color-octet matrix elements can be reliably extracted from this process.
Finally, we point out that an experimental measurement of the polarization of
leptoproduced will provide an excellent test of the NRQCD
factorization formalism.Comment: 33 pages latex. 10 figures. Uses revtex, epsf, and rotate macros.
This paper is also available via the UW phenomenology archives at
http://phenom.physics.wisc.edu/pub/preprints
The impact of current CH4 and N2O atmospheric loss process uncertainties on calculated ozone abundances and trends
The atmospheric loss processes of N2O and CH4, their estimated uncertainties, lifetimes, and impacts on ozone abundance and long-term trends are examined using atmospheric model calculations and updated kinetic and photochemical parameters and uncertainty factors from SPARC [2013]. The uncertainty ranges in calculated N2O and CH4 global lifetimes computed using the SPARC estimated uncertainties are reduced by nearly a factor of two compared with uncertainties from Sander et al. [2011]. Uncertainties in CH4 loss due to reaction with OH and O(1D) have relatively small impacts on present day global total ozone (±0.2-0.3%). Uncertainty in the Cl + CH4 reaction affects the amount of chlorine in radical vs. reservoir forms and has a modest impact on present day SH polar ozone (~±6%), and on the rate of past ozone decline and future recovery. Uncertainty in the total rate coefficient for the O(1D) + N2O reaction results in a substantial range in present day stratospheric odd nitrogen (±20-25%) and global total ozone (±1.5-2.5%). Uncertainty in the O(1D) + N2O reaction branching ratio for the O2 + N2 and 2*NO product channels results in moderate impacts on odd nitrogen (±10%) and global ozone (±1%),with uncertainty in N2O photolysis resulting in relatively small impacts (±5% in odd nitrogen, ±0.5% in global ozone). Uncertainties in the O(1D) + N2O reaction and its branching ratio also affect the rate of past global total ozone decline and future recovery, with a range in future ozone projections of ±1-1.5% by 2100, relative to present day
Interpreting ambiguous ‘trace’ results in Schistosoma mansoni CCA Tests: Estimating sensitivity and specificity of ambiguous results with no gold standard
Background The development of new diagnostics is an important tool in the fight against disease. Latent Class Analysis (LCA) is used to estimate the sensitivity and specificity of tests in the absence of a gold standard. The main field diagnostic for Schistosoma mansoni infection, Kato-Katz (KK), is not very sensitive at low infection intensities. A point-of-care circulating cathodic antigen (CCA) test has been shown to be more sensitive than KK. However, CCA can return an ambiguous ‘trace’ result between ‘positive’ and ‘negative’, and much debate has focused on interpretation of traces results. Methodology/Principle findings We show how LCA can be extended to include ambiguous trace results and analyse S. mansoni studies from both Côte d’Ivoire (CdI) and Uganda. We compare the diagnostic performance of KK and CCA and the observed results by each test to the estimated infection prevalence in the population. Prevalence by KK was higher in CdI (13.4%) than in Uganda (6.1%), but prevalence by CCA was similar between countries, both when trace was assumed to be negative (CCAtn: 11.7% in CdI and 9.7% in Uganda) and positive (CCAtp: 20.1% in CdI and 22.5% in Uganda). The estimated sensitivity of CCA was more consistent between countries than the estimated sensitivity of KK, and estimated infection prevalence did not significantly differ between CdI (20.5%) and Uganda (19.1%). The prevalence by CCA with trace as positive did not differ significantly from estimates of infection prevalence in either country, whereas both KK and CCA with trace as negative significantly underestimated infection prevalence in both countries. Conclusions Incorporation of ambiguous results into an LCA enables the effect of different treatment thresholds to be directly assessed and is applicable in many fields. Our results showed that CCA with trace as positive most accurately estimated infection prevalence
From Multiview Image Curves to 3D Drawings
Reconstructing 3D scenes from multiple views has made impressive strides in
recent years, chiefly by correlating isolated feature points, intensity
patterns, or curvilinear structures. In the general setting - without
controlled acquisition, abundant texture, curves and surfaces following
specific models or limiting scene complexity - most methods produce unorganized
point clouds, meshes, or voxel representations, with some exceptions producing
unorganized clouds of 3D curve fragments. Ideally, many applications require
structured representations of curves, surfaces and their spatial relationships.
This paper presents a step in this direction by formulating an approach that
combines 2D image curves into a collection of 3D curves, with topological
connectivity between them represented as a 3D graph. This results in a 3D
drawing, which is complementary to surface representations in the same sense as
a 3D scaffold complements a tent taut over it. We evaluate our results against
truth on synthetic and real datasets.Comment: Expanded ECCV 2016 version with tweaked figures and including an
overview of the supplementary material available at
multiview-3d-drawing.sourceforge.ne
Beyond the Fokker-Planck equation: Pathwise control of noisy bistable systems
We introduce a new method, allowing to describe slowly time-dependent
Langevin equations through the behaviour of individual paths. This approach
yields considerably more information than the computation of the probability
density. The main idea is to show that for sufficiently small noise intensity
and slow time dependence, the vast majority of paths remain in small space-time
sets, typically in the neighbourhood of potential wells. The size of these sets
often has a power-law dependence on the small parameters, with universal
exponents. The overall probability of exceptional paths is exponentially small,
with an exponent also showing power-law behaviour. The results cover time spans
up to the maximal Kramers time of the system. We apply our method to three
phenomena characteristic for bistable systems: stochastic resonance, dynamical
hysteresis and bifurcation delay, where it yields precise bounds on transition
probabilities, and the distribution of hysteresis areas and first-exit times.
We also discuss the effect of coloured noise.Comment: 37 pages, 11 figure
The role of tyrosine M210 in the initial charge separation in the reaction center of Rhodobacter sphaeroides
Field Induced Reduction of the Low Temperature Superfluid Density in YBa2Cu3O6.95
A novel high magnetic field (8 T) spectrometer for muon spin rotation has
been used to measure the temperature dependence of the in-plane magnetic
penetration depth in YBa2Cu3O6.95. At low H and low T, the penetration depth
exhibits the characteristic linear T dependence associated with the energy gap
of a d_x^2-y^2-wave superconductor. However, at higher fields the penetration
depth is essentially temperature independent at low T. We discuss possible
interpretations of this surprising new feature in the low-energy excitation
spectrum.Comment: 8 pages, 4 figures, 1 RevTex file and 4 postscript figure
Disparities and risks of sexually transmissible infections among men who have sex with men in China: a meta-analysis and data synthesis.
BACKGROUND: Sexually transmitted infections (STIs), including Hepatitis B and C virus, are emerging public health risks in China, especially among men who have sex with men (MSM). This study aims to assess the magnitude and risks of STIs among Chinese MSM. METHODS: Chinese and English peer-reviewed articles were searched in five electronic databases from January 2000 to February 2013. Pooled prevalence estimates for each STI infection were calculated using meta-analysis. Infection risks of STIs in MSM, HIV-positive MSM and male sex workers (MSW) were obtained. This review followed the PRISMA guidelines and was registered in PROSPERO. RESULTS: Eighty-eight articles (11 in English and 77 in Chinese) investigating 35,203 MSM in 28 provinces were included in this review. The prevalence levels of STIs among MSM were 6.3% (95% CI: 3.5-11.0%) for chlamydia, 1.5% (0.7-2.9%) for genital wart, 1.9% (1.3-2.7%) for gonorrhoea, 8.9% (7.8-10.2%) for hepatitis B (HBV), 1.2% (1.0-1.6%) for hepatitis C (HCV), 66.3% (57.4-74.1%) for human papillomavirus (HPV), 10.6% (6.2-17.6%) for herpes simplex virus (HSV-2) and 4.3% (3.2-5.8%) for Ureaplasma urealyticum. HIV-positive MSM have consistently higher odds of all these infections than the broader MSM population. As a subgroup of MSM, MSW were 2.5 (1.4-4.7), 5.7 (2.7-12.3), and 2.2 (1.4-3.7) times more likely to be infected with chlamydia, gonorrhoea and HCV than the broader MSM population, respectively. CONCLUSION: Prevalence levels of STIs among MSW were significantly higher than the broader MSM population. Co-infection of HIV and STIs were prevalent among Chinese MSM. Integration of HIV and STIs healthcare and surveillance systems is essential in providing effective HIV/STIs preventive measures and treatments. TRIAL REGISTRATION: PROSPERO NO: CRD42013003721
Colossal dielectric constants in transition-metal oxides
Many transition-metal oxides show very large ("colossal") magnitudes of the
dielectric constant and thus have immense potential for applications in modern
microelectronics and for the development of new capacitance-based
energy-storage devices. In the present work, we thoroughly discuss the
mechanisms that can lead to colossal values of the dielectric constant,
especially emphasising effects generated by external and internal interfaces,
including electronic phase separation. In addition, we provide a detailed
overview and discussion of the dielectric properties of CaCu3Ti4O12 and related
systems, which is today's most investigated material with colossal dielectric
constant. Also a variety of further transition-metal oxides with large
dielectric constants are treated in detail, among them the system La2-xSrxNiO4
where electronic phase separation may play a role in the generation of a
colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in
the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator
Transitions and Ordering of Microscopic Degrees of Freedom
- …
