5,656 research outputs found
Interference-filter-stabilized external-cavity diode lasers
We have developed external-cavity diode lasers, where the wavelength
selection is assured by a low loss interference filter instead of the common
diffraction grating. The filter allows a linear cavity design reducing the
sensitivity of the wavelength and the external cavity feedback against
misalignment. By separating the feedback and wavelength selection functions,
both can be optimized independently leading to an increased tunability of the
laser. The design is employed for the generation of laser light at 698, 780 and
852 nm. Its characteristics make it a well suited candidate for space-born
lasers.Comment: 12 pages, 5 figure
Wear Mechanisms of Hydrogenated DLC in Oils Containing MoDTC
Diamond-Like Carbon (DLC) coatings are well known for offering excellent tribological properties. They have been shown to offer low friction and outstanding wear performance in both dry and lubricated conditions. Application of these coatings for automotive components is considered as a promising strategy to cope with the emerging requirements regarding fuel economy and durability. Commercially available oils are generally optimised to work on conventional ferrous surfaces and are not necessarily effective in lubricating non-ferrous surfaces. Recently, the adverse effect of the Molybdenum DialkyldithioCarbamate (MoDTC) friction modifier additive on the wear performance of the hydrogenated DLC has been reported. However, the mechanisms by which MoDTC imposes this high wear to DLC are not yet well understood. A better understanding of DLC wear may potentially lead to better compatibility between DLC surfaces and current additive technology being achieved. In this work, the wear properties of DLC coatings in the DLC/cast iron (CI) system under boundary lubrication conditions have been investigated to try to understand what appears to be a tribocorrosion-type process. A pin-on-plate tribotester was used to run the experiments using High Speed Steel (HSS) plates coated with 15 at.% hydrogenated DLC (a-C:15H) sliding against CI pins or ceramic balls. The lubricants used in this study are typical examples of the same fully formulated oil with and without ZDDP. The friction and wear responses of the fully formulated oils are discussed in detail. Furthermore, Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX), Focused Ion Beam (FIB) and Transmission Electron Microscopy (TEM) were used to observe the wear scar and propose wear mechanisms. The X-ray Photoelectron Spectroscopy (XPS) analysis was performed on the tribofilms to understand the tribochemical interactions between oil additives and the DLC coating. Nano-indentation analysis was conducted to assess potential structural modifications of the DLC coating. Coating hardness data could provide a better insight into the wear mode and failure mechanism of such hard coatings. Given the obtained results, the wear behaviour of the hydrogenated DLC coating was found to depend not only on the presence of ZDDP in the oil formulation but also on the counterpart type. This study revealed that the steel counterpart is a critical component of the tribocouple leading to MoDTC-induced wear of the hydrogenated DLC
Evolution of precipitates, in particular cruciform and cuboid particles, during simulated direct charging of thin slab cast vanadium microalloyed steels
A study has been undertaken of four vanadium based steels which have been processed by a simulated direct charging route using processing parameters typical of thin slab casting, where the cast product has a thickness of 50 to 80mm ( in this study 50 mm) and is fed directly to a furnace to equalise the microstructure prior to rolling. In the direct charging process, cooling rates are faster, equalisation times shorter and the amount of deformation introduced during rolling less than in conventional practice. Samples in this study were quenched after casting, after equalisation, after 4th rolling pass and after coiling, to follow the evolution of microstructure. The mechanical and toughness properties and the microstructural features might be expected to differ from equivalent steels, which have undergone conventional processing. The four low carbon steels (~0.06wt%) which were studied contained 0.1wt%V (V-N), 0.1wt%V and 0.010wt%Ti (V-Ti), 0.1wt%V and 0.03wt%Nb (V-Nb), and 0.1wt%V, 0.03wt%Nb and 0.007wt%Ti (V-Nb-Ti). Steels V-N and V-Ti contained around 0.02wt% N, while the other two contained about 0.01wt%N. The as-cast steels were heated at three equalising temperatures of 1050C, 1100C or 1200C and held for 30-60 minutes prior to rolling. Optical microscopy and analytical electron microscopy, including parallel electron energy loss spectroscopy (PEELS), were used to characterise the precipitates. In the as-cast condition, dendrites and plates were found. Cuboid particles were seen at this stage in Steel V-Ti, but they appeared only in the other steels after equalization. In addition, in the final product of all the steels, fine particles were seen, but it was only in the two titanium steels that cruciform precipitates were present. PEELS analysis showed that the dendrites, plates, cuboids, cruciforms and fine precipitates were essentially nitrides. The two Ti steels had better toughness than the other steels but inferior lower yield stress values. This was thought to be, in part, due to the formation of cruciform precipitates in austenite, thereby removing nitrogen and the microalloying elements which would have been expected to precipitate in ferrite as dispersion hardening particles
Necessary conditions for variational regularization schemes
We study variational regularization methods in a general framework, more
precisely those methods that use a discrepancy and a regularization functional.
While several sets of sufficient conditions are known to obtain a
regularization method, we start with an investigation of the converse question:
How could necessary conditions for a variational method to provide a
regularization method look like? To this end, we formalize the notion of a
variational scheme and start with comparison of three different instances of
variational methods. Then we focus on the data space model and investigate the
role and interplay of the topological structure, the convergence notion and the
discrepancy functional. Especially, we deduce necessary conditions for the
discrepancy functional to fulfill usual continuity assumptions. The results are
applied to discrepancy functionals given by Bregman distances and especially to
the Kullback-Leibler divergence.Comment: To appear in Inverse Problem
Experimental and numerical results on three-dimensional instabilities in a rotating disk-tall cylinder flow
State-space models' dirty little secrets: even simple linear Gaussian models can have estimation problems
State-space models (SSMs) are increasingly used in ecology to model
time-series such as animal movement paths and population dynamics. This type of
hierarchical model is often structured to account for two levels of
variability: biological stochasticity and measurement error. SSMs are flexible.
They can model linear and nonlinear processes using a variety of statistical
distributions. Recent ecological SSMs are often complex, with a large number of
parameters to estimate. Through a simulation study, we show that even simple
linear Gaussian SSMs can suffer from parameter- and state-estimation problems.
We demonstrate that these problems occur primarily when measurement error is
larger than biological stochasticity, the condition that often drives
ecologists to use SSMs. Using an animal movement example, we show how these
estimation problems can affect ecological inference. Biased parameter estimates
of a SSM describing the movement of polar bears (\textit{Ursus maritimus})
result in overestimating their energy expenditure. We suggest potential
solutions, but show that it often remains difficult to estimate parameters.
While SSMs are powerful tools, they can give misleading results and we urge
ecologists to assess whether the parameters can be estimated accurately before
drawing ecological conclusions from their results
Magneto-optical Trapping of Cadmium
We report the laser-cooling and confinement of Cd atoms in a magneto-optical
trap, and characterize the loading process from the background Cd vapor. The
trapping laser drives the 1S0-1P1 transition at 229 nm in this two-electron
atom and also photoionizes atoms directly from the 1P1 state. This
photoionization overwhelms the other loss mechanisms and allows a direct
measurement of the photoionization cross section, which we measure to be
2(1)x10^(-16)cm^(2) from the 1P1 state. When combined with nearby laser-cooled
and trapped Cd^(+) ions, this apparatus could facilitate studies in ultracold
interactions between atoms and ions.Comment: 8 pages, 11 figure
In the Interests of clients or commerce? Legal aid, supply, demand, and 'ethical indeterminacy' in criminal defence work
As a professional, a lawyer's first duty is to serve the client's best interests, before simple monetary gain. In criminal defence work, this duty has been questioned in the debate about the causes of growth in legal aid spending: is it driven by lawyers (suppliers) inducing unnecessary demand for their services or are they merely responding to increased demand? Research reported here found clear evidence of a change in the handling of cases in response to new payment structures, though in ways unexpected by the policy's proponents. The paper develops the concept of 'ethical indeterminacy' as a way of understanding how defence lawyers seek to reconcile the interests of commerce and clients. Ethical indeterminacy suggests that where different courses of action could each be said to benefit the client, the lawyer will tend to advise the client to decide in the lawyer's own interests. Ethical indeterminacy is mediated by a range of competing conceptions of 'quality' and 'need'. The paper goes on to question the very distinction between 'supply' and 'demand' in the provision of legal services
- …
