101 research outputs found

    On Computing Morphological Similarity of Audio Signals

    Get PDF
    (Abstract to follow

    An investigation of likelihood normalization for robust ASR

    Get PDF
    International audienceNoise-robust automatic speech recognition (ASR) systems rely on feature and/or model compensation. Existing compensation techniques typically operate on the features or on the parameters of the acoustic models themselves. By contrast, a number of normalization techniques have been defined in the field of speaker verification that operate on the resulting log-likelihood scores. In this paper, we provide a theoretical motivation for likelihood normalization due to the so-called "hubness" phenomenon and we evaluate the benefit of several normalization techniques on ASR accuracy for the 2nd CHiME Challenge task. We show that symmetric normalization (S-norm) reduces the relative error rate by 43% alone and by 10% after feature and model compensation

    A Hybrid Approach to Music Playlist Continuation Based on Playlist-Song Membership

    Full text link
    Automated music playlist continuation is a common task of music recommender systems, that generally consists in providing a fitting extension to a given playlist. Collaborative filtering models, that extract abstract patterns from curated music playlists, tend to provide better playlist continuations than content-based approaches. However, pure collaborative filtering models have at least one of the following limitations: (1) they can only extend playlists profiled at training time; (2) they misrepresent songs that occur in very few playlists. We introduce a novel hybrid playlist continuation model based on what we name "playlist-song membership", that is, whether a given playlist and a given song fit together. The proposed model regards any playlist-song pair exclusively in terms of feature vectors. In light of this information, and after having been trained on a collection of labeled playlist-song pairs, the proposed model decides whether a playlist-song pair fits together or not. Experimental results on two datasets of curated music playlists show that the proposed playlist continuation model compares to a state-of-the-art collaborative filtering model in the ideal situation of extending playlists profiled at training time and where songs occurred frequently in training playlists. In contrast to the collaborative filtering model, and as a result of its general understanding of the playlist-song pairs in terms of feature vectors, the proposed model is additionally able to (1) extend non-profiled playlists and (2) recommend songs that occurred seldom or never in training~playlists

    Connectionists and statisticians, friends or foes?

    Full text link

    On the Use of Self-organizing Maps for Clustering and Visualization

    No full text
    We will show that the number of output units used in a selforganizing map (SOM) influences its applicability for either clustering or visualization. By reviewing the appropriate literature and theory as well as our own empirical results, we demonstrate that SOMs can be used for clustering or visualization separately, for simultaneous clustering and visualization, and even for clustering via visualization. For all these different kinds of application, SOM is compared to other statistical approaches. This will show SOM to be a flexible tool which can be used for various forms of explorative data analysis but it will also be made obvious that this flexibility comes with a price in terms of impaired performance. The usage of SOM in the data mining community is covered by discussing its application in the data mining tools Clementine and WEBSOM
    corecore