612 research outputs found
Generalized routhian calculations within the Skyrme-Hartree-Fock approximation
We consider here variational solutions in the Hartree-Fock approximation upon
breaking time reversal and axial symmetries. When decomposed on axial harmonic
oscillator functions, the corresponding single particle triaxial eigenstates as
functions of the usual cylindrical coordinates (r, , z) are evaluated
on a mesh in r and z to be integrated within Gauss-Hermite and Gauss-Laguerre
approaches and as Fourier decompositions in the angular variable .
Using an effective interaction of the Skyrme type, the Hartree-Fock hamiltonian
is also obtained as a Fourier series allowing a two dimensional calculation of
its matrix elements. This particular choice is shown to lead in most cases to
shorter computation times compared to the usual decomposition on triaxial
harmonic oscillator states. We apply this method to the case of the
semi-quantal approach of large amplitude collective motion corresponding to a
generalized routhian formalism and present results in the A=150 superdeformed
region for the coupling of global rotation and intrinsic vortical modes in what
is known after Chandrasekhar as the S-ellipsoid coupling case.Comment: LaTeX using elsart, 32 pages, 4 included figures, submitted to
Nuclear Physics A (revised version
"Beat" patterns for the odd-even staggering in octupole bands from a quadrupole-octupole Hamiltonian
We propose a collective Hamiltonian which incorporates the standard
quadrupole terms, octupole terms classified according to the irreducible
representations of the octahedron group, a quadrupole-octupole interaction, as
well as a term for the bandhead energy linear in K (the projection of angular
momentum on the body-fixed z-axis). The energy is subsequently minimized with
respect to K for each given value of the angular momentum I, resulting in K
values increasing with I within each band, even in the case in which K is
restricted to a set of microscopically plausible values. We demonstrate that
this Hamiltonian is able to reproduce a variety of ``beat'' patterns observed
recently for the odd-even staggering in octupole bands of light actinides.Comment: LaTeX, 20 pages plus 12 figures given in separate .ps file
Compilation of Giant Electric Dipole Resonances Built on Excited States
Giant Electric Dipole Resonance (GDR) parameters for gamma decay to excited
states with finite spin and temperature are compiled. Over 100 original works
have been reviewed and from some 70 of which more than 300 parameter sets of
hot GDR parameters for different isotopes, excitation energies, and spin
regions have been extracted. All parameter sets have been brought onto a common
footing by calculating the equivalent Lorentzian parameters. The current
compilation is complementary to an earlier compilation by Samuel S. Dietrich
and Barry L. Berman (At. Data Nucl. Data Tables 38(1988)199-338) on
ground-state photo-neutron and photo-absorption cross sections and their
Lorentzian parameters. A comparison of the two may help shed light on the
evolution of GDR parameters with temperature and spin. The present compilation
is current as of January 2006.Comment: 31 pages including 1 tabl
Staggering behavior of the low lying excited states of even-even nuclei in a Sp(4,R) classification scheme
We implement a high order discrete derivative analysis of the low lying
collective energies of even-even nuclei with respect to the total number of
valence nucleon pairs N in the framework of F- spin multiplets appearing in a
symplectic sp(4,R) classification scheme. We find that for the nuclei of any
given F- multiplet the respective experimental energies exhibit a Delta N=2
staggering behavior and for the nuclei of two united neighboring F- multiplets
well pronounced Delta N=1 staggering patterns are observed. Those effects have
been reproduced successfully through a generalized sp(4,R) model energy
expression and explained in terms of the step-like changes in collective modes
within the F- multiplets and the alternation of the F-spin projection in the
united neighboring multiplets. On this basis we suggest that the observed Delta
N=2 and Delta N=1 staggering effects carry detailed information about the
respective systematic manifestation of both high order alpha - particle like
quartetting of nucleons and proton (neutron) pairing interaction in nuclei.PACS
number(s):21.10.Re, 21.60.FwComment: 22 pages and 6 figures changes in the figure caption
DIP-2 suppresses ectopic neurite sprouting and axonal regeneration in mature neurons.
Neuronal morphology and circuitry established during early development must often be maintained over the entirety of animal lifespans. Compared with neuronal development, the mechanisms that maintain mature neuronal structures and architecture are little understood. The conserved disco-interacting protein 2 (DIP2) consists of a DMAP1-binding domain and two adenylate-forming domains (AFDs). We show that the Caenorhabditis elegans DIP-2 maintains morphology of mature neurons. dip-2 loss-of-function mutants display a progressive increase in ectopic neurite sprouting and branching during late larval and adult life. In adults, dip-2 also inhibits initial stages of axon regeneration cell autonomously and acts in parallel to DLK-1 MAP kinase and EFA-6 pathways. The function of DIP-2 in maintenance of neuron morphology and in axon regrowth requires its AFD domains and is independent of its DMAP1-binding domain. Our findings reveal a new conserved regulator of neuronal morphology maintenance and axon regrowth after injury
and bifurcations in rotational bands of diatomic molecules
It is shown that the recently observed bifurcation seen in
superdeformed nuclear bands is also occurring in rotational bands of diatomic
molecules. In addition, signs of a bifurcation, of the same order
of magnitude as the one, are observed both in superdeformed
nuclear bands and rotational bands of diatomic molecules.Comment: LaTex twice, 10 pages and 5 PS figures provided upon demand by the
Author
The Dynamical Dipole Mode in Dissipative Heavy Ion Collisions
We study the effect of a direct Giant Dipole Resonance () excitation in
intermediate dinuclear systems with exotic shape and charge distributions
formed in charge asymmetric fusion entrance channels. A related enhancement of
the gamma yield in the evaporation cascade of the fused nucleus is
expected. The dynamical origin of such extra strength will show up in a
characteristic anisotropy of the dipole gamma-emission. A fully microscopic
analysis of the fusion dynamics is performed with quantitative predictions of
the photon yield based on a dynamics- statistics coupling model. In
particular we focus our attention on the energy and mass dependence of the
effect.
We suggest a series of new experiments, in particular some optimal entrance
channel conditions. We stress the importance of using the new available
radioactive beams.Comment: 20 pages (Latex), 14 Postscript figure
English Teachers in the Former G.D.R. Ten Years After the WENDE: What’s New?
English teachers who work in public schools in the eastern part of Germany are doing a very different type of job than they were ten years ago. Although the physical setting and the subject matter is still the same, they are teaching in a new school system based on the West German model. Their personal and professional relationships with the people they work with are different now, and attitudes toward the language they teach have been altered by the political and social changes. This paper seeks to identify interviews conducted in a certain region during a short time span. It is my hope that it will portray the situation of English school teachers as it is now, ten years after the “peaceful revolution” in the G.D.R
Microscopic Study of Superdeformed Rotational Bands in 151Tb
Structure of eight superdeformed bands in the nucleus 151Tb is analyzed using
the results of the Hartree-Fock and Woods-Saxon cranking approaches. It is
demonstrated that far going similarities between the two approaches exist and
predictions related to the structure of rotational bands calculated within the
two models are nearly parallel. An interpretation scenario for the structure of
the superdeformed bands is presented and predictions related to the exit spins
are made. Small but systematic discrepancies between experiment and theory,
analyzed in terms of the dynamical moments, J(2), are shown to exist. The
pairing correlations taken into account by using the particle-number-projection
technique are shown to increase the disagreement. Sources of these systematic
discrepancies are discussed -- they are most likely related to the yet not
optimal parametrization of the nuclear interactions used.Comment: 32 RevTeX pages, 15 figures included, submitted to Physical Review
Quadrupole and Hexadecapole Correlations in Rotating Nuclei Studied within the Single-j Shell Model
The influence of quadrupole and hexadecapole residual interactions on
rotational bands is investigated in a single-j shell model. An exact
shell-model diagonalization of quadrupole-plus-hexadecapole interaction can
sometimes produce a staggering of energy levels in the yrast bands.Comment: 15 pages, 9 Postscript figures, REVTEX, to be published in PR
- …
