426 research outputs found
Sex differences in the influence of body mass index on anatomical architecture of brain networks.
Background/objectivesThe brain has a central role in regulating ingestive behavior in obesity. Analogous to addiction behaviors, an imbalance in the processing of rewarding and salient stimuli results in maladaptive eating behaviors that override homeostatic needs. We performed network analysis based on graph theory to examine the association between body mass index (BMI) and network measures of integrity, information flow and global communication (centrality) in reward, salience and sensorimotor regions and to identify sex-related differences in these parameters.Subjects/methodsStructural and diffusion tensor imaging were obtained in a sample of 124 individuals (61 males and 63 females). Graph theory was applied to calculate anatomical network properties (centrality) for regions of the reward, salience and sensorimotor networks. General linear models with linear contrasts were performed to test for BMI and sex-related differences in measures of centrality, while controlling for age.ResultsIn both males and females, individuals with high BMI (obese and overweight) had greater anatomical centrality (greater connectivity) of reward (putamen) and salience (anterior insula) network regions. Sex differences were observed both in individuals with normal and elevated BMI. In individuals with high BMI, females compared to males showed greater centrality in reward (amygdala, hippocampus and nucleus accumbens) and salience (anterior mid-cingulate cortex) regions, while males compared to females had greater centrality in reward (putamen) and sensorimotor (posterior insula) regions.ConclusionsIn individuals with increased BMI, reward, salience and sensorimotor network regions are susceptible to topological restructuring in a sex-related manner. These findings highlight the influence of these regions on integrative processing of food-related stimuli and increased ingestive behavior in obesity, or in the influence of hedonic ingestion on brain topological restructuring. The observed sex differences emphasize the importance of considering sex differences in obesity pathophysiology
A method for concentrating dilute protein solutions
A method for concentrating dilute protein solution
Assay of proteolytic enzyme(s) from Neurospora crassa
Assay of proteolytic enzyme(s) from Neurospora crass
Priority sites for wildfowl conservation in Mexico
A set of priority sites for wildfowl conservation in Mexico was determined using contemporary count data (1991–2000) from the U.S. Fish & Wildlife Service mid-winter surveys. We used a complementarity approach implemented through linear integer programming that addresses particular conservation concerns for every species included in the analysis and large fluctuations in numbers through time.
A set of 31 priority sites was identified, which held more than 69% of the mid-winter count total in Mexico during all surveyed years. Six sites were in the northern highlands, 12 in the central highlands, six on the Gulf of Mexico coast and seven on the upper Pacific coast. Twenty-two sites from the priority set have previously been identified as qualifying for designation as wetlands of international importance under the Ramsar Convention and 20 sites are classified as Important Areas for Bird Conservation in Mexico. The information presented here provides an accountable, spatially-explicit, numerical basis for ongoing conservation planning efforts in Mexico, which can be used to improve existing wildfowl conservation networks in the country and can also be useful for conservation planning exercises elsewhere
A simple method for the induction of high levels of tyrosinase activity
A simple method for the induction of high levels of tyrosinase activit
Using the Instrumented Sway System (ISway) to Identify and Compare Balance Domain Deficits in People With Multiple Sclerosis
Objective To develop a multiple sclerosis (MS)-specific model of balance and examine differences between (1) MS and neurotypical controls and (2) people with MS (PwMS) with (MS-F) and without a fall history (MS-NF).
Design and Setting A cross-sectional study was conducted at the Gait and Balance Laboratory at the University of Kansas Medical Center. Balance was measured from the instrumented sway system (ISway) assessment.
Participants In total, 118 people with relapsing-remitting MS (MS-F=39; MS-NF=79) and 46 age-matched neurotypical controls.
Intervention Not applicable.
Outcome Measures A total of 22 sway measures obtained from the ISway were entered into an exploratory factor analysis to identify underlying balance domains. The model-derived balance domains were compared between (1) PwMS and age-matched, neurotypical controls and (2) MS-F and MS-NF.
Results Three distinct balance domains were identified: (1) sway amplitude and velocity, (2) sway frequency and jerk mediolateral, and (3) sway frequency and jerk anteroposterior, explaining 81.66% of balance variance. PwMS exhibited worse performance (ie, greater amplitude and velocity of sway) in the sway velocity and amplitude domain compared to age-matched neurotypical controls (P=.003). MS-F also exhibited worse performance in the sway velocity and amplitude domain compared to MS-NF (P=.046). The anteroposterior and mediolateral sway frequency and jerk domains were not different between PwMS and neurotypical controls nor between MS-F and MS-NF.
Conclusions This study identified a 3-factor, MS-specific balance model, demonstrating that PwMS, particularly those with a fall history, exhibit disproportionate impairments in sway amplitude and velocity. Identifying postural stability outcomes and domains that are altered in PwMS and clinically relevant (eg, related to falls) would help isolate potential treatment targets
Reduced Interhemispheric Functional Connectivity in the Motor Cortex during Rest in Limb-Onset Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of motor neurons that leads to paralysis and eventually death. There is evidence that atrophy occurs in the primary motor cortex (M1), but it is unclear how the disease affects the intrinsic connectivity of this structure. Thus, the goal of this study was to examine interhemispheric coupling of low frequency blood-oxygen-level dependent (BOLD) signal fluctuations in M1 using functional connectivity magnetic resonance imaging during rest. Because disease progression is rapid, high-functioning patients were recruited to assess neural changes in the relatively early stages of ALS. Twenty patients with limb-onset ALS participated in this study. A parceling technique was employed to segment both precentral gyri into multiple regions of interest (ROI), thus increasing sensitivity to detect changes that exist along discretely localized regions of the motor cortex. We report an overall systemic decrease in functional connectivity between right and left motor cortices in patients with limb-onset ALS. Additionally, we observed a pronounced disconnection between dorsal ROI pairs in the ALS group compared to the healthy control group. Furthermore, measures of limb functioning correlated with the connectivity data from dorsal ROI pairs in the ALS group, suggesting a symptomatic relationship with interhemispheric M1 connectivity
Immunogenicity and safety of an MF59-adjuvanted quadrivalent seasonal influenza vaccine in young children at high risk of influenza-associated complications: A Phase III, Randomized, observer-blind, multicenter clinical trial
Background: Vaccination against seasonal influenza is recommended for all children with a history of medical conditions placing them at increased risk of influenza-associated complications. The immunogenicity and efficacy of conventional influenza vaccines among young children are suboptimal; one strategy to enhance these is adjuvantation. We present immunogenicity and safety data for an MF59-adjuvanted quadrivalent influenza vaccine (aIIV4) in healthy children and those at a high risk of influenza-associated complications, based on the results of a recently completed phase III study. Methods: Children 6 months to 5 years of age (N = 10,644) were enrolled. The study was conducted across northern hemisphere seasons 2013-2014 and 2014-2015. Subjects received either aIIV4 or a nonadjuvanted comparator influenza vaccine. Antibody responses were assessed by hemagglutination inhibition assay against vaccine and heterologous strains. Long-term antibody persistence was assessed (ClinicalTrials.gov: NCT01964989). Results: aIIV4 induced significantly higher antibody titers than nonadjuvanted vaccine in high-risk subjects. aIIV4 antibody responses were of similar magnitude in high-risk and healthy subjects. Incidence of solicited local and systemic adverse events (AEs) was slightly higher in aIIV4 than nonadjuvanted vaccinees, in both the healthy and high-risk groups. Incidence of unsolicited AEs, serious AEs and AEs of special interest were similar for adjuvanted and nonadjuvanted vaccinees in the healthy and high-risk groups. Conclusion: aIIV4 was more immunogenic than nonadjuvanted vaccine in both the healthy and high-risk study groups. The reactogenicity and safety profiles of aIIV4 and the nonadjuvanted vaccine were acceptable and similar in 6-month- to 5-year-old high-risk and healthy children
Recommended from our members
Disrupted cortico-cerebellar connectivity in older adults
Healthy aging is marked by declines in a variety of cognitive and motor abilities. A better understanding of the aging brain may aid in elucidating the neural substrates of these behavioral effects. Investigations of resting state functional brain connectivity have provided insights into pathology, and to some degree, healthy aging. Given the role of the cerebellum in both motor and cognitive behaviors, as well as its known volumetric declines with age, investigating cerebellar networks may shed light on the neural bases of age-related functional declines. We mapped the resting state networks of the lobules of the right hemisphere and the vermis of the cerebellum in a group of healthy older adults and compared them to those of young adults. We report disrupted cortico-cerebellar resting state network connectivity in older adults. These results remain even when controlling for cerebellar volume, signal-to-noise ratio, and signal-to-fluctuation noise ratio. Specifically, there was consistent disruption of cerebellar connectivity with both the striatum and the medial temporal lobe. Associations between connectivity strength and both sensorimotor and cognitive task performance indicate that cerebellar engagement with the default mode network and striatal pathways is associated with better performance for older adults. These results extend our understanding of the resting state networks of the aging brain to include cortico-cerebellar networks, and indicate that age differences in network connectivity strength are important for behavior
- …
