545 research outputs found
UK adults' implicit and explicit attitudes towards obesity: a cross-sectional study.
Background: Anti-fat attitudes may lead to stigmatisation of and lowered self-esteem in obese people. Examining anti-fat attitudes is warranted given that there is an association with anti-fat behaviours. Previous studies, mainly outside the UK, have demonstrated that anti-fat attitudes are increasing over time. Methods: The study was cross-sectional with a sample of 2380 participants (74.2 % female; aged 18–65 years). In an online survey participants reported demographic characteristics and completed a range of implicit and explicit measures of obesity related attitudes. Results: Perceptions of obesity were more negative than reported in previously. Main effects indicated more negative perceptions in males, younger respondents and more frequent exercisers. Attitudes about obesity differed in relation to weight category, and in general were more positive in obese than non-obese respondents. Conclusions: This is the first study to demonstrate anti-fat attitudes across different sections of the UK population. As such, this study provides the first indication of the prevalence of anti-fat attitudes in UK adults. Interventions to modify these attitudes could target specific groups of individuals with more negative perceptions as identified here. Future work would be useful that increases understanding of both implicit and explicit attitudes towards obesity
The Genomic Signature of Crop-Wild Introgression in Maize
The evolutionary significance of hybridization and subsequent introgression
has long been appreciated, but evaluation of the genome-wide effects of these
phenomena has only recently become possible. Crop-wild study systems represent
ideal opportunities to examine evolution through hybridization. For example,
maize and the conspecific wild teosinte Zea mays ssp. mexicana, (hereafter,
mexicana) are known to hybridize in the fields of highland Mexico. Despite
widespread evidence of gene flow, maize and mexicana maintain distinct
morphologies and have done so in sympatry for thousands of years. Neither the
genomic extent nor the evolutionary importance of introgression between these
taxa is understood. In this study we assessed patterns of genome-wide
introgression based on 39,029 single nucleotide polymorphisms genotyped in 189
individuals from nine sympatric maize-mexicana populations and reference
allopatric populations. While portions of the maize and mexicana genomes were
particularly resistant to introgression (notably near known
cross-incompatibility and domestication loci), we detected widespread evidence
for introgression in both directions of gene flow. Through further
characterization of these regions and preliminary growth chamber experiments,
we found evidence suggestive of the incorporation of adaptive mexicana alleles
into maize during its expansion to the highlands of central Mexico. In
contrast, very little evidence was found for adaptive introgression from maize
to mexicana. The methods we have applied here can be replicated widely, and
such analyses have the potential to greatly informing our understanding of
evolution through introgressive hybridization. Crop species, due to their
exceptional genomic resources and frequent histories of spread into sympatry
with relatives, should be particularly influential in these studies
Construction of a Global Pain Systems Network Highlights Phospholipid Signaling as a Regulator of Heat Nociception
The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species. © 2012 Neely et al
Genome-scale analyses of health-promoting bacteria: probiogenomics
The human body is colonized by an enormous population of bacteria (microbiota) that provides the host with coding capacity and metabolic activities. Among the human gut microbiota are health-promoting indigenous species (probiotic bacteria) that are commonly consumed as live dietary supplements. Recent genomics-based studies (probiogenomics) are starting to provide insights into how probiotic bacteria sense and adapt to the gastrointestinal tract environment. In this Review, we discuss the application of probiogenomics in the elucidation of the molecular basis of probiosis using the well-recognized model probiotic bacteria genera Bifidobacterium and Lactobacillus as examples
Building International Business Theory: A Grounded Theory Approach
The field of international business (IB) is in need of more theory development (Morck & Yeung, 2007). As such, the main focus of our manuscript was to provide guidance on how to build IB specific theory using grounded theory (GT). Moreover, we contribute to future theory development by identifying areas within IB where GT can be applied and the type of research issues that can be addressed using this methodology. Finally, we make a noteworthy contribution by discussing some of GT’s caveats and limitations, particularly those relevant to IB. This effort is intended to spur further interest in the development of IB theory
Recommended from our members
Resting state cortico-thalamic-striatal connectivity predicts pesponse to dorsomedial prefrontal rTMS in major depressive disorder
Despite its high toll on society, there has been little recent improvement in treatment efficacy for Major Depressive Disorder (MDD). The identification of biological markers of successful treatment response may allow for more personalized and effective treatment. Here we investigate whether resting state functional connectivity predicted response to treatment with rapid transcranial magnetic stimulation (rTMS) to dorsomedial prefrontal cortex (dmPFC). Twenty five individuals with treatment-refractory MDD underwent a 4-week course of dmPFC-rTMS. Before and after treatment, subjects received resting state functional MRI scans and assessments of depressive symptoms using the Hamilton Depresssion Rating Scale (HAMD17). We found that higher baseline cortico-cortical connectivity (dmPFC-subgenual cingulate and subgenual cingulate to dorsolateral PFC) and lower cortico-thalamic, cortico-striatal and cortico-limbic connectivity were associated with better treatment outcomes. We also investigated how changes in connectivity over the course of treatment related to improvements in HAMD17 scores. We found that successful treatment was associated with increased dmPFC-thalamic connectivity and decreased sgACC-caudate connectivity, Our findings provide insight into which individuals might respond to rTMS treatment and the mechanisms through which these treatments work
Eating disinhibition and vagal tone moderate the postprandial response to glycemic load: a randomised controlled trial
Physiological and molecular responses to an acute bout of reduced-exertion high-intensity interval training (REHIT)
PurposeWe have previously shown that 6 weeks of reduced-exertion high-intensity interval training (REHIT) improves V˙O2V˙O2 max in sedentary men and women and insulin sensitivity in men. Here, we present two studies examining the acute physiological and molecular responses to REHIT.MethodsIn Study 1, five men and six women (age: 26 ± 7 year, BMI: 23 ± 3 kg m−2, V˙O2V˙O2 max: 51 ± 11 ml kg−1 min−1) performed a single 10-min REHIT cycling session (60 W and two 20-s ‘all-out’ sprints), with vastus lateralis biopsies taken before and 0, 30, and 180 min post-exercise for analysis of glycogen content, phosphorylation of AMPK, p38 MAPK and ACC, and gene expression of PGC1α and GLUT4. In Study 2, eight men (21 ± 2 year; 25 ± 4 kg·m−2; 39 ± 10 ml kg−1 min−1) performed three trials (REHIT, 30-min cycling at 50 % of V˙O2V˙O2 max, and a resting control condition) in a randomised cross-over design. Expired air, venous blood samples, and subjective measures of appetite and fatigue were collected before and 0, 15, 30, and 90 min post-exercise.ResultsAcutely, REHIT was associated with a decrease in muscle glycogen, increased ACC phosphorylation, and activation of PGC1α. When compared to aerobic exercise, changes in V˙O2V˙O2 , RER, plasma volume, and plasma lactate and ghrelin were significantly more pronounced with REHIT, whereas plasma glucose, NEFAs, PYY, and measures of appetite were unaffected.ConclusionsCollectively, these data demonstrate that REHIT is associated with a pronounced disturbance of physiological homeostasis and associated activation of signalling pathways, which together may help explain previously observed adaptations once considered exclusive to aerobic exercise
Systematic Genetic Nomenclature for Type VII Secretion Systems
CITATION: Bitter, W., et al. 2009. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathogens, 5(10): 1-6, doi: 10.1371/journal.ppat.1000507.The original publication is available at http://journals.plos.org/plospathogensMycobacteria, such as the etiological
agent of human tuberculosis, Mycobacterium
tuberculosis, are protected by an impermeable
cell envelope composed of an inner
cytoplasmic membrane, a peptidoglycan
layer, an arabinogalactan layer, and an
outer membrane. This second membrane
consists of covalently linked, tightly packed
long-chain mycolic acids [1,2] and noncovalently
bound shorter lipids involved in
pathogenicity [3–5]. To ensure protein
transport across this complex cell envelope,
mycobacteria use various secretion pathways,
such as the SecA1-mediated general
secretory pathway [6,7], an alternative
SecA2-operated pathway [8], a twin-arginine
translocation system [9,10], and a
specialized secretion pathway variously
named ESAT-6-, SNM-, ESX-, or type
VII secretion [11–16]. The latter pathway,
hereafter referred to as type VII secretion
(T7S), has recently become a large and
competitive research topic that is closely
linked to studies of host–pathogen interactions
of M. tuberculosis [17] and other
pathogenic mycobacteria [16]. Molecular
details are just beginning to be revealed
[18–22] showing that T7S systems are
complex machineries with multiple components
and multiple substrates. Despite
their biological importance, there has been
a lack of a clear naming policy for the
components and substrates of these systems.
As there are multiple paralogous T7S
systems within the Mycobacteria and
orthologous systems in related bacteria,
we are concerned that, without a unified
nomenclature system, a multitude of redundant
and obscure gene names will be
used that will inevitably lead to confusion
and hinder future progress. In this opinion
piece we will therefore propose and introduce
a systematic nomenclature with
guidelines for name selection of new
components that will greatly facilitate
communication and understanding in this
rapidly developing field of research.http://journals.plos.org/plospathogens/article?id=10.1371%2Fjournal.ppat.1000507Publisher's versio
Emerging roles of ATF2 and the dynamic AP1 network in cancer
Cooperation among transcription factors is central for their ability to execute specific transcriptional programmes. The AP1 complex exemplifies a network of transcription factors that function in unison under normal circumstances and during the course of tumour development and progression. This Perspective summarizes our current understanding of the changes in members of the AP1 complex and the role of ATF2 as part of this complex in tumorigenesis.Fil: Lopez Bergami, Pablo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Lau, Eric . Burnham Institute for Medical Research; Estados UnidosFil: Ronai, Zeev . Burnham Institute for Medical Research; Estados Unido
- …
