1,679 research outputs found
Impact of a 6-wk olive oil supplementation in healthy adults on urinary proteomic biomarkers of coronary artery disease, chronic kidney disease, and diabetes (types 1 and 2): a randomized, parallel, controlled, double-blind study
Background: Olive oil (OO) consumption is associated with cardiovascular disease prevention because of both its oleic acid and phenolic contents. The capacity of OO phenolics to protect against low-density lipoprotein (LDL) oxidation is the basis for a health claim by the European Food Safety Authority. Proteomic biomarkers enable an early, presymptomatic diagnosis of disease, which makes them important and effective, but understudied, tools for primary prevention.
Objective: We evaluated the impact of supplementation with OO, either low or high in phenolics, on urinary proteomic biomarkers of coronary artery disease (CAD), chronic kidney disease (CKD), and diabetes.
Design: Self-reported healthy participants (n = 69) were randomly allocated (stratified block random assignment) according to age and body mass index to supplementation with a daily 20-mL dose of OO either low or high in phenolics (18 compared with 286 mg caffeic acid equivalents per kg, respectively) for 6 wk. Urinary proteomic biomarkers were measured at baseline and 3 and 6 wk alongside blood lipids, the antioxidant capacity, and glycation markers.
Results: The consumption of both OOs improved the proteomic CAD score at endpoint compared with baseline (mean improvement: –0.3 for low-phenolic OO and −0.2 for high-phenolic OO; P < 0.01) but not CKD or diabetes proteomic biomarkers. However, there was no difference between groups for changes in proteomic biomarkers or any secondary outcomes including plasma triacylglycerols, oxidized LDL, and LDL cholesterol.
Conclusion: In comparison with low-phenolic OO, supplementation for 6 wk with high-phenolic OO does not lead to an improvement in cardiovascular health markers in a healthy cohort. This trial was registered at www.controlled-trials.com as ISRCTN93136746
Proton Pump Inhibitors Are Not Associated With Acute Kidney Injury in Critical Illness
Recent epidemiologic data linking proton pump inhibitor (PPI) use to acute and chronic kidney dysfunction is yet to be validated in other populations, and mechanisms have not been explored. Using a large, well phenotyped inception cohort of 15 063 critically ill patients, we examined the risk of acute kidney injury (AKI), as defined by the Kidney Disease Improving Global Outcomes criteria guidelines, according to prior use of a PPI, histamine-2 receptor antagonist (H 2 RA), or neither. A total of 3725 (24.7%) patients reported PPI use prior to admission, while 905 (6.0%) patients reported H 2 RA use. AKI occurred in 747 (20.0%) and 163 (18.0%) of PPI and H 2 RA users respectively, compared to 1712 (16.2%) of those not taking acid suppressive medications. In unadjusted analysis, PPI and H 2 RA users had a 28% (95%CI 1.17-1.41, P < .001) and 10% (95%CI 0.91-1.30, P =.31) higher risk of AKI compared to those taking neither class of medication. However, in sequential models that included adjustment for demographics, cardiovascular comorbidities, indications for PPI use, and severity of illness, the effect of PPI on the risk of AKI was attenuated, and in the adjusted analysis, PPI was not associated with AKI (OR 1.02; 95%CI 0.91-1.13, P =.73). The presence of sterile pyuria and hypomagnesemia did not modify the association between PPI use and AKI. In summary, after adjustment for demographics, illness severity, and the indication for PPI use, PPI use prior to admission is not associated with critical illness AKI.National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant 2R01 EB001659
Serum methylarginines and spirometry-measured lung function in older adults
Rationale: Methylarginines are endogenous nitric oxide synthase inhibitors that have been implicated in animal models of lung disease but have not previously been examined for their association with spirometric measures of lung function in humans.
Objectives: This study measured serum concentrations of asymmetric and symmetric dimethylarginine in a representative sample of older community-dwelling adults and determined their association with spirometric lung function measures.
Methods: Data on clinical, lifestyle, and demographic characteristics, methylated arginines, and L-arginine (measured using LC-MS/MS) were collected from a population-based sample of older Australian adults from the Hunter Community Study.
The five key lung function measures included as outcomes were Forced Expiratory Volume in 1 second, Forced Vital Capacity, Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio, Percent Predicted Forced Expiratory Volume in 1 second, and Percent Predicted Forced Vital Capacity.
Measurements and Main Results: In adjusted analyses there were statistically significant independent associations between a) higher asymmetric dimethylarginine, lower Forced Expiratory Volume in 1 second and lower Forced Vital Capacity; and b) lower L-arginine/asymmetric dimethylarginine ratio, lower Forced Expiratory Volume in 1 second, lower Percent Predicted Forced Expiratory Volume in 1 second and lower Percent Predicted Forced Vital Capacity. By contrast, no significant associations were observed between symmetric dimethylarginine and lung function.
Conclusions: After adjusting for clinical, demographic, biochemical, and pharmacological confounders, higher serum asymmetric dimethylarginine was independently associated with a reduction in key measures of lung function. Further research is needed to determine if methylarginines predict the decline in lung function
Family History of Exceptional Longevity Is Associated with Lower Serum Uric Acid Levels in A shkenazi J ews
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91205/1/jgs3902.pd
FGF23-klotho axis as predictive factors of fractures in type 2 diabetics with early chronic kidney disease
Background: The aim of our study was to evaluate the relevance of FGF23-klotho axis in the predisposition for bone fractures in type 2 diabetic patients with early chronic kidney disease.
Methods: In a prospective study we included 126 type 2 diabetic patients with CKD stages 2-3 (from 2010 to 2017). We used descriptive statistics, ANOVA and chi-square test. Our population was divided into two groups according to the occurrence of a bone fracture event or not, and the groups were compared considering several biological and laboratorial parameters. We employed a multiple regression model to identify risk factors for bone fracture events and hazard ratios (HR) were calculated using a backward stepwise likelihood ratio (LR) Cox regression.
Results: Patients with a fracture event displayed higher levels of FGF-23, Phosphorus, PTH, TNF-alpha, OxLDL, HOMA-IR, calcium x phosphorus product and ACR and lower levels of Osteocalcin, alpha-Klotho, 25(OH)D3 and eGFR compared with patients without a fracture event (p < 0.001). The number of patients with a fracture event was higher than expected within inclining CKD stages (chi 2, p = 0.06). The occurrence of fracture and the levels of TNF-alpha, klotho, 25(OH)D3 and OxLDL were found to predict patient entry into RRT (p < 0.05). Age, osteocalcin, alpha-Klotho and FGF-23 independently influenced the occurrence of bone fracture (p < 0.05).
Conclusions: alpha-Klotho and FGF-23 levels may have a good clinical use as biomarkers to predict the occurrence of fracture events. (C) 2019 Elsevier Inc. All rights reserved.info:eu-repo/semantics/publishedVersio
Carbamylated low-density lipoprotein induces endothelial dysfunction
Aims Cardiovascular events remain the leading cause of death in Western world. Atherosclerosis is the most common underlying complication driven by low-density lipoproteins (LDL) disturbing vascular integrity. Carbamylation of lysine residues, occurring primarily in the presence of chronic kidney disease (CKD), may affect functional properties of lipoproteins; however, its effect on endothelial function is unknown. Methods and results Low-density lipoprotein from healthy donors was isolated and carbamylated. Vascular reactivity after treatment with native LDL (nLDL) or carbamylated LDL (cLDL) was examined in organ chambers for isometric tension recording using aortic rings of wild-type or lectin-like-oxidized LDL receptor-1 (LOX-1) transgenic mice. Reactive oxygen species (ROS) and nitric oxide (NO) production were determined using electron spin resonance spectroscopy. The effect of LDL-carbamyl-lysine levels on cardiovascular outcomes was determined in patients with CKD during a median follow-up of 4.7 years. Carbamylated LDL impaired endothelium-dependent relaxation to acetylcholine or calcium-ionophore A23187, but not endothelium-independent relaxation to sodium nitroprusside. In contrast, nLDL had no effect. Carbamylated LDL enhanced aortic ROS production by activating NADPH-oxidase. Carbamylated LDL stimulated endothelial NO synthase (eNOS) uncoupling at least partially by promoting S-glutathionylation of eNOS. Carbamylated LDL-induced endothelial dysfunction was enhanced in LOX-1 transgenic mice. In patients with CKD, LDL-carbamyl-lysine levels were significant predictors for cardiovascular events and all-cause mortality. Conclusions Carbamylation of LDL induces endothelial dysfunction via LOX-1 activation and increased ROS production leading to eNOS uncoupling. This indicates a novel mechanism in the pathogenesis of atherosclerotic disease which may be pathogenic and prognostic in patients with CKD and high plasma levels of cLD
Urinary proteomic biomarkers to predict cardiovascular events
Purpose: We have previously demonstrated associations between the urinary proteome profile and coronary artery disease (CAD) in cross-sectional studies. Here we evaluate the potential of a urinary proteomic panel as a predictor of CAD in the Hypertensive Atherosclerotic Cardiovascular Disease (HACVD) sub-study population of the ASCOT study.<p></p>
Experimental design: Thirty-seven cases with primary CAD endpoint were matched for sex and age to controls who had not reached a CAD endpoint during the study. Spot urine samples were analysed using capillary electrophoresis (CE) coupled to Micro-TOF mass spectrometry (MS). A previously developed 238-marker CE-MS model for diagnosis of CAD (CAD238) was assessed for its predictive potential.<p></p>
Results: Sixty urine samples (32 cases; 28 controls; 88% male, mean age 64±5 years) were analysed. There was a trend towards healthier values in controls for the CAD model classifier (-0.432±0.326 vs -0.587±0.297, P = 0.170), and the CAD model showed statistical significance on Kaplan-Meier survival analysis P = 0.021. We found 190 individual markers out of 1501 urinary peptides that separated cases and controls (AUC>0.6). Of these, 25 peptides were also components of CAD238.<p></p>
Conclusion & clinical relevance: A urinary proteome panel originally developed in a cross-sectional study predicts CAD endpoints independent of age and sex in a well controlled prospective study.<p></p>
Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy
Background: Urine proteome analysis is rapidly emerging as a tool for diagnosis and prognosis in disease states. For diagnosis of diabetic nephropathy (DN), urinary proteome analysis was successfully applied in a pilot study. The validity of the previously established proteomic biomarkers with respect to the diagnostic and prognostic potential was assessed on a separate set of patients recruited at three different European centers. In this case-control study of 148 Caucasian patients with diabetes mellitus type 2 and duration >= 5 years, cases of DN were defined as albuminuria >300 mg/d and diabetic retinopathy (n = 66). Controls were matched for gender and diabetes duration (n = 82).
Methodology/Principal Findings: Proteome analysis was performed blinded using high-resolution capillary electrophoresis coupled with mass spectrometry (CE-MS). Data were evaluated employing the previously developed model for DN. Upon unblinding, the model for DN showed 93.8% sensitivity and 91.4% specificity, with an AUC of 0.948 (95% CI 0.898-0.978). Of 65 previously identified peptides, 60 were significantly different between cases and controls of this study. In <10% of cases and controls classification by proteome analysis not entirely resulted in the expected clinical outcome. Analysis of patient's subsequent clinical course revealed later progression to DN in some of the false positive classified DN control patients.
Conclusions: These data provide the first independent confirmation that profiling of the urinary proteome by CE-MS can adequately identify subjects with DN, supporting the generalizability of this approach. The data further establish urinary collagen fragments as biomarkers for diabetes-induced renal damage that may serve as earlier and more specific biomarkers than the currently used urinary albumin
Reduced microvascular density in omental biopsies of children with chronic kidney disease
Endothelial dysfunction is an early manifestation of cardiovascular disease (CVD) and consistently observed in patients with chronic kidney disease (CKD). We hypothesized that CKD is associated with systemic damage to the microcirculation, preceding macrovascular pathology. To assess the degree of "uremic microangiopathy", we have measured microvascular density in biopsies of the omentum of children with CKD.Omental tissue was collected from 32 healthy children (0-18 years) undergoing elective abdominal surgery and from 23 age-matched cases with stage 5 CKD at the time of catheter insertion for initiation of peritoneal dialysis. Biopsies were analyzed by independent observers using either a manual or an automated imaging system for the assessment of microvascular density. Quantitative immunohistochemistry was performed for markers of autophagy and apoptosis, and for the abundance of the angiogenesis-regulating proteins VEGF-A, VEGF-R2, Angpt1 and Angpt2.Microvascular density was significantly reduced in uremic children compared to healthy controls, both by manual imaging with a digital microscope (median surface area 0.61% vs. 0.95%, p<0.0021 and by automated quantification (total microvascular surface area 0.89% vs. 1.17% p = 0.01). Density measured by manual imaging was significantly associated with age, height, weight and body surface area in CKD patients and healthy controls. In multivariate analysis, age and serum creatinine level were the only independent, significant predictors of microvascular density (r2 = 0.73). There was no immunohistochemical evidence for apoptosis or autophagy. Quantitative staining showed similar expression levels of the angiogenesis regulators VEGF-A, VEGF-receptor 2 and Angpt1 (p = 0.11), but Angpt2 was significantly lower in CKD children (p = 0.01).Microvascular density is profoundly reduced in omental biopsies of children with stage 5 CKD and associated with diminished Angpt2 signaling. Microvascular rarefaction could be an early systemic manifestation of CKD-induced cardiovascular disease
- …
