732 research outputs found
Propagation through Martian dust at 8.5 and 32 GHz
Independent studies of attenuation of X-band (8.5 GHz) and Ka-band (32 Ghz) radio signals when traversing Martian dust were carried out. These analyses turned out remarkably similar. The computational method is essentially that of T. S. Chu but uses observed optical depth at 0.67 microns rather than visibility as the measure of optical attenuation from which to derive the microwave attenuation. An awkwardness in the approach is that the size distribution of Martian dust particles is not well known, but the mean is probably around 4 microns, whereas in the terrestrial case it is nearer 10 microns. As a consequence, there will be a larger tail of particles still in the Mie regime in the Martian case as compared to the terrestrial one. The computational error will, therefore, be somewhat larger for Martian than Earth-bound dust. Fortunately, the indicated attenuations are small enough for the worst case (1.3 dB at 32 GHz) that the error is academic
Molecular Principles of Gene Fusion Mediated Rewiring of Protein Interaction Networks in Cancer
Gene fusions are common cancer-causing mutations, but the molecular principles by which fusion protein products affect interaction networks and cause disease are not well understood. Here, we perform an integrative analysis of the structural, interactomic, and regulatory properties of thousands of putative fusion proteins. We demonstrate that genes that form fusions (i.e., parent genes) tend to be highly connected hub genes, whose protein products are enriched in structured and disordered interaction-mediating features. Fusion often results in the loss of these parental features and the depletion of regulatory sites such as post-translational modifications. Fusion products disproportionately connect proteins that did not previously interact in the protein interaction network. In this manner, fusion products can escape cellular regulation and constitutively rewire protein interaction networks. We suggest that the deregulation of central, interaction-prone proteins may represent a widespread mechanism by which fusion proteins alter the topology of cellular signaling pathways and promote cancer
A modified apparatus for dual, sterilized, isolated perfusion of the rat liver
The isolated perfused rat liver (IPRL) has proven to be a useful model for the study of physiology and pathology of the liver. For research in nonparenchymal cell (NPC) function that includes measurement of cytokine production (eg, TNF), it is necessary to have a sterilized perfusion system. We have modified the IPRL apparatus so as to be able to perform sterile perfusions of two livers simultaneously. The perfusion apparatus is a recirculating closed system in which the oxygenator is a plastic container separated into two chambers by a fenestrated plastic wall. A disposable macropore filter functions as both a bubble trap and perfusate filter. The sterilization process is done by immersing the various components in Benz-All solution. The tubing is disinfected by irrigation with 10% Clorox followed by 0.9% sodium chloride solution. The perfusate used is filter-sterilized Krebs buffer solution containing 0.5 g Mandol/250 mL perfusate. Not only can two organs be conveniently perfused simultaneously, but the entire system can be reliably sterilized for up to 20 consecutive perfusions. Bile production is higher and more stable with less leakage of intracellular enzymes. Many of the components are disposable and can be altered to suit the needs of a particular experiment. © 1990 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted
Saving Super-Earths:Interplay between Pebble Accretion and Type I Migration
Overcoming type I migration and preventing low-mass planets from spiralling into the central star is a long-studied topic. It is well known that outward migration is possible in viscously heated disks relatively close to the central star because the entropy gradient can be sufficiently steep for the positive corotation torque to overcome the negative Lindblad torque. Yet efficiently trapping planets in this region remains elusive. Here we study disk conditions that yield outward migration for low-mass planets under specific planet migration prescriptions. In a steady-state disk model with a constant α-viscosity, outward migration is only possible when the negative temperature gradient exceeds ∼0.87. We derive an implicit relation for the highest mass at which outward migration is possible as a function of viscosity and disk scale height. We apply these criteria, using a simple power-law disk model, to planets that have reached their pebble isolation mass after an episode of rapid accretion. It is possible to trap planets with the pebble isolation mass farther than the inner edge of the disk provided that α crit 0.004 for disks older than 1 Myr. In very young disks, the high temperature causes the planets to grow to masses exceeding the maximum for outward migration. As the disk evolves, these more massive planets often reach the central star, generally only toward the end of the disk lifetime. Saving super-Earths is therefore a delicate interplay between disk viscosity, the opacity profile, and the temperature gradient in the viscously heated inner disk
Accretion, Outflows, and Winds of Magnetized Stars
Many types of stars have strong magnetic fields that can dynamically
influence the flow of circumstellar matter. In stars with accretion disks, the
stellar magnetic field can truncate the inner disk and determine the paths that
matter can take to flow onto the star. These paths are different in stars with
different magnetospheres and periods of rotation. External field lines of the
magnetosphere may inflate and produce favorable conditions for outflows from
the disk-magnetosphere boundary. Outflows can be particularly strong in the
propeller regime, wherein a star rotates more rapidly than the inner disk.
Outflows may also form at the disk-magnetosphere boundary of slowly rotating
stars, if the magnetosphere is compressed by the accreting matter. In isolated,
strongly magnetized stars, the magnetic field can influence formation and/or
propagation of stellar wind outflows. Winds from low-mass, solar-type stars may
be either thermally or magnetically driven, while winds from massive, luminous
O and B type stars are radiatively driven. In all of these cases, the magnetic
field influences matter flow from the stars and determines many observational
properties. In this chapter we review recent studies of accretion, outflows,
and winds of magnetized stars with a focus on three main topics: (1) accretion
onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and
(3) winds from isolated massive magnetized stars. We show results obtained from
global magnetohydrodynamic simulations and, in a number of cases compare global
simulations with observations.Comment: 60 pages, 44 figure
Effects of landscape configuration on northern bobwhite in southeastern Kansas
Doctor of PhilosophyDepartment of BiologyPhilip S. GipsonNorthern bobwhite (Colinus virginianus) populations in much of the species range have been declining for the last 35 years. I trapped and equipped bobwhite with radio transmitters and tracked them during 2003-2005. I used these data to examine the effects of landscape configuration on survival as well as the habitat association of bobwhite in southeastern Kansas. I used the nest survival model in Program MARK to determine the effects of habitat configuration on weekly survival of radio equipped bobwhite during the Fall-Spring (1 October to 14 April) and the Spring-Fall (15 April to 30 September) at home range and 500 m buffer scales. Individual survival probability for the Fall-Spring period was 0.9439 (S.E. = 0.0071), and the most parsimonious model for the Fall-Spring period at the home range scale was B0 + percent woodland + percent cropland. At the 500 m buffer scale the most parsimonious model was B0 + percent Conservation Reserve (CRP) program land. The weekly survival probability for the Spring-Fall period was 0.9559 (S.E. = 0.0098). At the home range and 500 m buffer scales there were weak associations of habitat to survival during Spring-Fall with the most parsimonious model for both scales B0 + percent other. Using Euclidean Distances to measure distance from animal location to each habitat, I found that habitat selection was occurring during the Spring-Fall (Wilkes λ = 0.04, F 6,36 = 143.682, P < 0.001) and Fall-Spring (Wilkes λ = 0.056, F 6, 29 = 81.99, P < 0.001). During Spring-Fall bobwhite were associated with locations near cool-season grasses and during Fall-Spring preferred locations near woody cover. Bobwhite also showed habitat selection at a second more refined land use classification level for Spring-Fall (Wilkes λ = 0.006, F 16, 26 = 284.483, P < 0.001) and Fall-Spring (Wilkes λ = 0.004, F 16, 19 = 276.037, P < 0.001). During the Spring-Fall, bobwhites were associated with locations near cool-season grass pastures and roads and during Fall-Spring were associated with locations in close proximity to roads and CRP. Understanding the effects of habitat configuration on bobwhite is an important step in developing a broad-scale management plan
Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations
We use an ensemble of aircraft, satellite, sonde, and surface observations for April–May 2006 (NASA/INTEX-B aircraft campaign) to better understand the mechanisms for transpacific ozone pollution and its implications for North American air quality. The observations are interpreted with a global 3-D chemical transport model (GEOS-Chem). OMI NO<sub>2</sub> satellite observations constrain Asian anthropogenic NO<sub>x</sub> emissions and indicate a factor of 2 increase from 2000 to 2006 in China. Satellite observations of CO from AIRS and TES indicate two major events of Asian transpacific pollution during INTEX-B. Correlation between TES CO and ozone observations shows evidence for transpacific ozone pollution. The semi-permanent Pacific High and Aleutian Low cause splitting of transpacific pollution plumes over the Northeast Pacific. The northern branch circulates around the Aleutian Low and has little impact on North America. The southern branch circulates around the Pacific High and some of that air impacts western North America. Both aircraft measurements and model results show sustained ozone production driven by peroxyacetylnitrate (PAN) decomposition in the southern branch, roughly doubling the transpacific influence from ozone produced in the Asian boundary layer. Model simulation of ozone observations at Mt. Bachelor Observatory in Oregon (2.7 km altitude) indicates a mean Asian ozone pollution contribution of 9&plusmn;3 ppbv to the mean observed concentration of 54 ppbv, reflecting mostly an enhancement in background ozone rather than episodic Asian plumes. Asian pollution enhanced surface ozone concentrations by 5–7 ppbv over western North America in spring 2006. The 2000–2006 rise in Asian anthropogenic emissions increased this influence by 1–2 ppbv
Structure and mechanics of supporting cells in the guinea pig organ of Corti.
The mechanical properties of the mammalian organ of Corti determine its sensitivity to sound frequency and intensity, and the structure of supporting cells changes progressively with frequency along the cochlea. From the apex (low frequency) to the base (high frequency) of the guinea pig cochlea inner pillar cells decrease in length incrementally from 75-55 µm whilst the number of axial microtubules increases from 1,300-2,100. The respective values for outer pillar cells are 120-65 µm and 1,500-3,000. This correlates with a progressive decrease in the length of the outer hair cells from >100 µm to 20 µm. Deiters'cell bodies vary from 60-50 µm long with relatively little change in microtubule number. Their phalangeal processes reflect the lengths of outer hair cells but their microtubule numbers do not change systematically. Correlations between cell length, microtubule number and cochlear location are poor below 1 kHz. Cell stiffness was estimated from direct mechanical measurements made previously from isolated inner and outer pillar cells. We estimate that between 200 Hz and 20 kHz axial stiffness, bending stiffness and buckling limits increase, respectively,~3, 6 and 4 fold for outer pillar cells, ~2, 3 and 2.5 fold for inner pillar cells and ~7, 20 and 24 fold for the phalangeal processes of Deiters'cells. There was little change in the Deiters'cell bodies for any parameter. Compensating for effective cell length the pillar cells are likely to be considerably stiffer than Deiters'cells with buckling limits 10-40 times greater. These data show a clear relationship between cell mechanics and frequency. However, measurements from single cells alone are insufficient and they must be combined with more accurate details of how the multicellular architecture influences the mechanical properties of the whole organ
Distance-Based Habitat Associations of Northern Bobwhites in a Fescue-Dominated Landscape in Kansas
Northern bobwhites (Colinus virginianus) have a wide distribution across North America which influences its’ associations with habitats in a variety of landscapes. We used radio-marked bobwhites and Euclidean distance to characterize land cover associations of bobwhites at generalized level 1 and specific level 2 land cover classifications during the reproductive (15 Apr-14 Oct) and covey (15 Oct-14 Apr) periods in southeastern Kansas from 2003 to 2005. Habitat associations occurred during the reproductive (Wilkes’ k 1⁄4 0.04, F6,36 1⁄4 143.682, P , 0.001) and covey (Wilkes’ k 1⁄4 0.056, F6, 29 1⁄4 81.99, P , 0.001) periods. Ranking of the reproductive period habitats indicated bobwhites preferred locations in close proximity to fescue (Festuca spp.) over all other habitats. Coveys preferred locations in close proximity to woody cover. Bobwhites were found to associate with specific habitats at the level 2 land cover classification during the reproductive (Wilkes’ k 1⁄4 0.006, F16, 26 1⁄4 284.483, P , 0.001) and covey (Wilkes’ k 1⁄4 0.004, F16, 19 1⁄4 276.037, P , 0.001) periods. Bobwhites preferred locations in close proximity to fescue pastures and roads equally over all other habitats during the reproductive period. Coveys preferred locations in close proximity to roads and Conservation Reserve Program lands during the covey period. Fescue pastures may be avoided by bobwhites during the covey period, provided adequate cover is not provided, but bobwhites are strongly associated with them during the reproductive period because they meet nesting and brooding needs not met by other habitats
- …
