1,022 research outputs found
THE SEPTEMBER 2013 RAIN AND FLOOD EVENTS IN THE FLAM’S VALLEY BASIN. CAUSES, CHARACTERISTICS AND THEIR IMPACT UPON THE ENVIRONMENT
Between 11.09 and 14.09 2013 the north-eastern part of Tulcea County, especially the areas located around Somova village was affected by heavy, torrential rainfall that totalized over 30 mm/sq m and triggered dangerous hydrological phenomena (important slope, stream and river flows). As a result of these heavy downpours, Flam’s Valley was affected by an exceptional flash-flood which measured a peak discharge that reached a 1% exceeding probability. Another destructive characteristic of the weather phenomena that occurred in September 2013 was that the heavy rain was accompanied by violent gusty winds that resembled tornado-like features, bringing serious threat to houses, households and roads. In this paper we have analyzed the weather features that produced the September 2013 flash flood from both a spatial and a temporal perspective. The hydrological analysis focuses on the peak discharge that was recorded during the flash flood as well as on the characteristics elements of the topographic profiles. The paper ends with a brief presentation of the consequences that the weather and hydrological phenomena had upon the environment and population as well
Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition.
The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy
Adaptive first-order methods with enhanced worst-case rates
The Optimized Gradient Method (OGM), its strongly convex extension, the
Information Theoretical Exact Method (ITEM), as well as the related Triple
Momentum Method (TMM) have superior convergence guarantees when compared to the
Fast Gradient Method but lack adaptivity and their derivation is incompatible
with composite problems. In this work we introduce a slightly modified version
of the estimate sequence that can be used to simultaneously derive OGM, ITEM
and TMM while adding memory along with the ability to dynamically adjust the
convergence guarantees at runtime. Our framework can be extended to the
composite setup and we use it to construct an Enhanced Accelerated Composite
Gradient Method equipped with fully-adaptive line-search.Comment: 33 pages, 2 figure
Non-Perturbative Effects on a Fractional D3-Brane
In this note we study the N=1 abelian gauge theory on the world volume of a
single fractional D3-brane. In the limit where gravitational interactions are
not completely decoupled we find that a superpotential and a fermionic bilinear
condensate are generated by a D-brane instanton effect. A related situation
arises for an isolated cycle invariant under an orientifold projection, even in
the absence of any gauge theory brane. Moreover, in presence of supersymmetry
breaking background fluxes, such instanton configurations induce new couplings
in the 4-dimensional effective action, including non-perturbative contributions
to the cosmological constant and non-supersymmetric mass terms.Comment: 18 pages, v3: refs adde
SU(5) D-brane realizations, Yukawa couplings and proton stability
We discuss SU(5) Grand Unified Theories in the context of orientifold
compactifications. Specifically, we investigate two and three D-brane stack
realizations of the Georgi-Glashow and the flipped SU(5) model and analyze them
with respect to their Yukawa couplings. As pointed out in arXiv:0909.0271 the
most economical Georgi-Glashow realization based on two stacks generically
suffers from a disastrous large proton decay rate. We show that allowing for an
additional U(1) D-brane stack this as well as other phenomenological problems
can be resolved. We exemplify with globally consistent Georgi-Glashow models
based on RCFT that these D-brane quivers can be indeed embedded in a global
setting. These globally consistent realizations admit rigid O(1) instantons
inducing the perturbatively missing coupling 10105^H. Finally we show that
flipped SU(5) D-brane realizations even with multiple U(1) D-brane stacks are
plagued by severe phenomenological drawbacks which generically cannot be
overcome.Comment: 34 pages v2 minor correction
Non-perturbative effective interactions from fluxes
Motivated by possible implications on the problem of moduli stabilization and
other phenomenological aspects, we study D-brane instanton effects in flux
compactifications. We focus on a local model and compute non-perturbative
interactions generated by gauge and stringy instantons in a N = 1 quiver theory
with gauge group U(N_0) x U(N_1) and matter in the bifundamentals. This model
is engineered with fractional D3-branes at a C^3/(Z_2 x Z_2) singularity, and
its non-perturbative sectors are described by introducing fractional
D-instantons. We find a rich variety of instanton-generated F- and D-term
interactions, ranging from superpotentials and Beasley-Witten like
multi-fermion terms to non-supersymmetric flux-induced instanton interactions.Comment: 37 pages, 7 figures. Final version published on JHEP. Section 4
modified in several points regarding string corrections in absence of fluxes;
in particular, section 4.3 is removed. Some other minor changes and two
references adde
Instanton Induced Neutrino Majorana Masses in CFT Orientifolds with MSSM-like spectra
Recently it has been shown that string instanton effects may give rise to
neutrino Majorana masses in certain classes of semi-realistic string
compactifications. In this paper we make a systematic search for supersymmetric
MSSM-like Type II Gepner orientifold constructions admitting boundary states
associated with instantons giving rise to neutrino Majorana masses and other L-
and/or B-violating operators. We analyze the zero mode structure of D-brane
instantons on general type II orientifold compactifications, and show that only
instantons with O(1) symmetry can have just the two zero modes required to
contribute to the 4d superpotential. We however discuss how the addition of
fluxes and/or possible non-perturbative extensions of the orientifold
compactifications would allow also instantons with and U(1) symmetries
to generate such superpotentials. In the context of Gepner orientifolds with
MSSM-like spectra, we find no models with O(1) instantons with just the
required zero modes to generate a neutrino mass superpotential. On the other
hand we find a number of models in one particular orientifold of the Gepner
model with instantons with a few extra uncharged
non-chiral zero modes which could be easily lifted by the mentioned effects. A
few more orientifold examples are also found under less stringent constraints
on the zero modes. This class of instantons have the interesting
property that R-parity conservation is automatic and the flavour structure of
the neutrino Majorana mass matrices has a simple factorized form.Comment: 68 pages, 2 figures; v2. typos corrected, refs adde
FCNC Processes from D-brane Instantons
Low string scale models might be tested at the LHC directly by their Regge
resonances. For such models it is important to investigate the constraints of
Standard Model precision measurements on the string scale. It is shown that
highly suppressed FCNC processes like K0- bar K^0 oscillations or leptonic
decays of the D0-meson provide non-negligible lower bounds on both the
perturbatively and surprisingly also non-perturbatively induced string theory
couplings. We present both the D-brane instanton formalism to compute such
amplitudes and discuss various possible scenarios and their constraints on the
string scale for (softly broken) supersymmetric intersecting D-brane models.Comment: 28 pages, 13 figures, reference added, 1 typo corrected, style file
adde
- …
