1,254 research outputs found
Effects of Random Link Removal on the Photonic Band Gaps of Honeycomb Networks
We explore the effects of random link removal on the photonic band gaps of
honeycomb networks. Missing or incomplete links are expected to be common in
practical realizations of this class of connected network structures due to
unavoidable flaws in the fabrication process. We focus on the collapse of the
photonic band gap due to the defects induced by the link removal. We show that
the photonic band gap is quite robust against this type of random decimation
and survives even when almost 58% of the network links are removed
Inversion formulas for the broken-ray Radon transform
We consider the inverse problem of the broken ray transform (sometimes also
referred to as the V-line transform). Explicit image reconstruction formulas
are derived and tested numerically. The obtained formulas are generalizations
of the filtered backprojection formula of the conventional Radon transform. The
advantages of the broken ray transform include the possibility to reconstruct
the absorption and the scattering coefficients of the medium simultaneously and
the possibility to utilize scattered radiation which, in the case of the
conventional X-ray tomography, is typically discarded.Comment: To be submitted to Inverse Problem
Thermal emission from finite photonic crystals
We present a microscopic theory of thermal emission from finite-sized photonic crystals and show that the directional spectral emissivity and related quantities can be evaluated via standard bandstructure computations without any approximation. We then identify the physical mechanisms through which interfaces modify the potentially super-Planckian radiation flow inside infinite photonic crystals, such that thermal emission from finite-sized samples is consistent with the fundamental limits set by Planck's law. As an application, we further demonstrate that a judicious choice of a photonic crystal's surface termination facilitates considerable control over both the spectral and angular thermal emission properties. © 2009 American Institute of Physics
Triplet-Singlet Spin Relaxation in Quantum Dots with Spin-Orbit Coupling
We estimate the triplet-singlet relaxation rate due to spin-orbit coupling
assisted by phonon emission in weakly-confined quantum dots. Our results for
two and four electrons show that the different triplet-singlet relaxation
trends observed in recent experiments under magnetic fields can be understood
within a unified theoretical description, as the result of the competition
between spin-orbit coupling and phonon emission efficiency. Moreover, we show
that both effects are greatly affected by the strength of the confinement and
the external magnetic field, which may give access to very long-lived triplet
states as well as to selective population of the triplet Zeeman sublevels.Comment: 5 pages, 3 figures. Closely related to recent experiments in
cond-mat/060972
Phonon-induced electron relaxation in weakly-confined single and coupled quantum dots
We investigate charge relaxation rates due to acoustic phonons in
weakly-confined quantum dot systems, including both deformation potential and
piezoelectric field interactions. Single-electron excited states lifetimes are
calculated for single and coupled quantum dot structures, both in homonuclear
and heteronuclear devices. Piezoelectric field scattering is shown to be the
dominant relaxation mechanism in many experimentally relevant situations. On
the other hand, we show that appropriate structure design allows to minimize
separately deformation potential and piezolectric field interactions, and may
bring electron lifetimes in the range of microseconds.Comment: 20 pages (preprint format), 7 figures, submitted to Physical Review
Effect of electron-electron interaction on the phonon-mediated spin relaxation in quantum dots
We estimate the spin relaxation rate due to spin-orbit coupling and acoustic
phonon scattering in weakly-confined quantum dots with up to five interacting
electrons. The Full Configuration Interaction approach is used to account for
the inter-electron repulsion, and Rashba and Dresselhaus spin-orbit couplings
are exactly diagonalized. We show that electron-electron interaction strongly
affects spin-orbit admixture in the sample. Consequently, relaxation rates
strongly depend on the number of carriers confined in the dot. We identify the
mechanisms which may lead to improved spin stability in few electron (>2)
quantum dots as compared to the usual one and two electron devices. Finally, we
discuss recent experiments on triplet-singlet transitions in GaAs dots subject
to external magnetic fields. Our simulations are in good agreement with the
experimental findings, and support the interpretation of the observed spin
relaxation as being due to spin-orbit coupling assisted by acoustic phonon
emission.Comment: 12 pages, 10 figures. Revised version. Changes in section V
(simulation of PRL 98, 126601 experiment
XML Reconstruction View Selection in XML Databases: Complexity Analysis and Approximation Scheme
Query evaluation in an XML database requires reconstructing XML subtrees
rooted at nodes found by an XML query. Since XML subtree reconstruction can be
expensive, one approach to improve query response time is to use reconstruction
views - materialized XML subtrees of an XML document, whose nodes are
frequently accessed by XML queries. For this approach to be efficient, the
principal requirement is a framework for view selection. In this work, we are
the first to formalize and study the problem of XML reconstruction view
selection. The input is a tree , in which every node has a size
and profit , and the size limitation . The target is to find a subset
of subtrees rooted at nodes respectively such that
, and is maximal.
Furthermore, there is no overlap between any two subtrees selected in the
solution. We prove that this problem is NP-hard and present a fully
polynomial-time approximation scheme (FPTAS) as a solution
Microscopic derivation of the Jaynes-Cummings model with cavity losses
In this paper we provide a microscopic derivation of the master equation for
the Jaynes-Cummings model with cavity losses. We single out both the
differences with the phenomenological master equation used in the literature
and the approximations under which the phenomenological model correctly
describes the dynamics of the atom-cavity system. Some examples wherein the
phenomenological and the microscopic master equations give rise to different
predictions are discussed in detail.Comment: 9 pages, 3 figures New version with minor correction Accepted for
publication on Physical Review
Exploiting the quantum Zeno effect to beat photon loss in linear optical quantum information processors
We devise a new technique to enhance transmission of quantum information
through linear optical quantum information processors. The idea is based on
applying the Quantum Zeno effect to the process of photon absorption. By
frequently monitoring the presence of the photon through a QND (quantum
non-demolition) measurement the absorption is suppressed. Quantum information
is encoded in the polarization degrees of freedom and is therefore not affected
by the measurement. Some implementations of the QND measurement are proposed.Comment: 4 pages, 1 figur
Description of non-specific DNA-protein interaction and facilitated diffusion with a dynamical model
We propose a dynamical model for non-specific DNA-protein interaction, which
is based on the 'bead-spring' model previously developed by other groups, and
investigate its properties using Brownian Dynamics simulations. We show that
the model successfully reproduces some of the observed properties of real
systems and predictions of kinetic models. For example, sampling of the DNA
sequence by the protein proceeds via a succession of 3d motion in the solvent,
1d sliding along the sequence, short hops between neighboring sites, and
intersegmental transfers. Moreover, facilitated diffusion takes place in a
certain range of values of the protein effective charge, that is, the
combination of 1d sliding and 3d motion leads to faster DNA sampling than pure
3d motion. At last, the number of base pairs visited during a sliding event is
comparable to the values deduced from single-molecule experiments. We also
point out and discuss some discrepancies between the predictions of this model
and some recent experimental results as well as some hypotheses and predictions
of kinetic models
- …
