99 research outputs found

    GREAT BUSTARD RESTOCKING IN EURASIA

    Get PDF
    Abstract The significant risk of biodiversity loss in Eurasia there is the habitat fragmentation of great bustard (otis tard

    Genes of intestinal Escherichia coli and their relation to the inflammatory activity in patients with ulcerative colitis and Crohn’s disease

    Get PDF
    Escherichia coli gene fimA was the most frequent gene that occurred in the intestine of all investigated groups. All subjects with fimA gene had significantly higher values of tumor necrosis factor alpha (TNF-α) and CRP than those with other E. coli genes. There was also a tendency to increased serum interleukin (IL)-6 levels in patients carrying the fimA gene; however, no relation was observed to serum IL-8 and IL-10. Patients with Crohn’s disease had significantly higher IL-6 than those with ulcerative colitis (UC) and controls. The highest levels of TNF-α were detected in the UC group. There were no significant differences in serum IL-8 and IL-10 between all three groups. The presence of E. coli gene fimA in the large bowel of patients with IBD is related to the immunological activity of the disease which may be important from the aspect of therapeutical strategy

    Software zur Ganzheitlichen Bilanzierung

    Full text link

    Absence of intestinal PPARγ aggravates acute infectious colitis in mice through a lipocalin-2-dependent pathway.

    Get PDF
    To be able to colonize its host, invading Salmonella enterica serovar Typhimurium must disrupt and severely affect host-microbiome homeostasis. Here we report that S. Typhimurium induces acute infectious colitis by inhibiting peroxisome proliferator-activated receptor gamma (PPARγ) expression in intestinal epithelial cells. Interestingly, this PPARγ down-regulation by S. Typhimurium is independent of TLR-4 signaling but triggers a marked elevation of host innate immune response genes, including that encoding the antimicrobial peptide lipocalin-2 (Lcn2). Accumulation of Lcn2 stabilizes the metalloproteinase MMP-9 via extracellular binding, which further aggravates the colitis. Remarkably, when exposed to S. Typhimurium, Lcn2-null mice exhibited a drastic reduction of the colitis and remained protected even at later stages of infection. Our data suggest a mechanism in which S. Typhimurium hijacks the control of host immune response genes such as those encoding PPARγ and Lcn2 to acquire residence in a host, which by evolution has established a symbiotic relation with its microbiome community to prevent pathogen invasion

    ER stress and the unfolded protein response in intestinal inflammation

    No full text
    Endoplasmic reticulum (ER) stress is a phenomenon that occurs when excessive protein misfolding occurs during biosynthesis. ER stress triggers a series of signaling and transcriptional events known as the unfolded protein response (UPR). The UPR attempts to restore homeostasis in the ER but if unsuccessful can trigger apoptosis in the stressed cells and local inflammation. Intestinal secretory cells are susceptible to ER stress because they produce large amounts of complex proteins for secretion, most of which are involved in mucosal defense. This review focuses on ER stress in intestinal secretory cells and describes how increased protein misfolding could occur in these cells, the process of degradation of misfolded proteins, the major molecular elements of the UPR pathway, and links between the UPR and inflammation. Evidence is reviewed from mouse models and human inflammatory bowel diseases that ties ER stress and activation of the UPR with intestinal inflammation, and possible therapeutic approaches to ameliorate ER stress are discussed. Copyright © 2010 the American Physiological Society

    Intestinal secretory cell ER stress and inflammation

    No full text
    Data from animal models and human inflammatory bowel diseases have implicated the ER (endoplasmic reticulum) stress pathway in intestinal inflammation. We have characterized the development of inflammation in Winnie mice in which ER stress arises due to a single missense mutation in the MUC2 mucin produced by intestinal goblet cells. This model has allowed us to explore the genesis of inflammation ensuing from a single gene polymorphism affecting secretory cells. In these mice, a proportion of MUC2 misfolds during biosynthesis, leading to ER stress and activation of the unfolded protein response. Winnie mice develop spontaneous complex progressive inflammation that is most severe in the distal colon. Inflammation involves TH1, TH2 and TH17 T-cells, with a progressive development of a TH17-dominated response, but also involves innate immunity, in a pattern not dissimilar to human colitis. Experimental inhibition of tolerance in this model severely exacerbates colitis, demonstrating active effective suppression of inflammation. Even though the misfolding of MUC2 is a consequence of an inherited mutation, as inflammation develops, the molecular markers of ER stress increase further and goblet cell pathology becomes worse, suggesting that inflammation itself exacerbates ER stress
    corecore