8,007 research outputs found
Interference, reduced action, and trajectories
Instead of investigating the interference between two stationary, rectilinear
wave functions in a trajectory representation by examining the two rectilinear
wave functions individually, we examine a dichromatic wave function that is
synthesized from the two interfering wave functions. The physics of
interference is contained in the reduced action for the dichromatic wave
function. As this reduced action is a generator of the motion for the
dichromatic wave function, it determines the dichromatic wave function's
trajectory. The quantum effective mass renders insight into the behavior of the
trajectory. The trajectory in turn renders insight into quantum nonlocality.Comment: 12 pages text, 5 figures. Typos corrected. Author's final submission.
A companion paper to "Welcher Weg? A trajectory representation of a quantum
Young's diffraction experiment", quant-ph/0605121. Keywords: interference,
nonlocality, trajectory representation, entanglement, dwell time, determinis
Introduction to the Economics of Changing Markets and Evolving Technologies
Agricultural and Food Policy, International Relations/Trade, Marketing,
Welcher Weg? A trajectory representation of a quantum Young's diffraction experiment
The double slit problem is idealized by simplifying each slit by a point
source. A composite reduced action for the two correlated point sources is
developed. Contours of the reduced action, trajectories and loci of transit
times are developed in the region near the two point sources. The trajectory
through any point in Euclidian 3-space also passes simultaneously through both
point sources.Comment: 12 pages LaTeX2e, 9 figures. Typos corrected. Author's final
submission. A companion paper to "Interference, reduced action, and
trajectories", quant-ph/0605120. Keywords: interference, Young's experiment,
entanglement, nonlocality, trajectory representation, determinis
An Evaluation of the Effect of Discharging a High Quality Effluent into a Small Ozark Mountain Stream
Recently the newly constructed Fayetteville wastewater treatment plant went on line and directed a portion of its discharge to a point in the Mud Creek drainage basin that had previously not received any effluent. Prior to the discharge, a background study had been performed to establish the water quality in the basin. The background data, when compared to the data collected by this study, allowed any alteration of the stream water quality to be evaluated. Also the modeling procedure used to set the effluent limits for the treatment plant was analyzed. All stream data were compared to the limits set forth for surface water quality by the Department of Pollution Control and Ecology. The new discharge had some effect on the receiving stream, however, the stream still meets Arkansas water quality standards for all parameters
The high energy limit of the trajectory representation of quantum mechanics
The trajectory representation in the high energy limit (Bohr correspondence
principle) manifests a residual indeterminacy. This indeterminacy is compared
to the indeterminacy found in the classical limit (Planck's constant to 0)
[Int. J. Mod. Phys. A 15, 1363 (2000)] for particles in the classically allowed
region, the classically forbiden region, and near the WKB turning point. The
differences between Bohr's and Planck's principles for the trajectory
representation are compared with the differences between these correspondence
principles for the wave representation. The trajectory representation in the
high energy limit is shown to go to neither classical nor statistical
mechanics. The residual indeterminacy is contrasted to Heisenberg uncertainty.
The relationship between indeterminacy and 't Hooft's information loss and
equivalence classes is investigated.Comment: 12 pages of LaTeX. No figures. Incorporated into the "Proceedings of
the Seventh International Wigner Symposium" (ed. M. E. Noz), 24-29 August
2001, U. of Maryland. Proceedings available at
http://www.physics.umd.edu/robo
The Equivalence Postulate of Quantum Mechanics
The Equivalence Principle (EP), stating that all physical systems are
connected by a coordinate transformation to the free one with vanishing energy,
univocally leads to the Quantum Stationary HJ Equation (QSHJE). Trajectories
depend on the Planck length through hidden variables which arise as initial
conditions. The formulation has manifest p-q duality, a consequence of the
involutive nature of the Legendre transform and of its recently observed
relation with second-order linear differential equations. This reflects in an
intrinsic psi^D-psi duality between linearly independent solutions of the
Schroedinger equation. Unlike Bohm's theory, there is a non-trivial action even
for bound states. No use of any axiomatic interpretation of the wave-function
is made. Tunnelling is a direct consequence of the quantum potential which
differs from the usual one and plays the role of particle's self-energy. The
QSHJE is defined only if the ratio psi^D/psi is a local self-homeomorphism of
the extended real line. This is an important feature as the L^2 condition,
which in the usual formulation is a consequence of the axiomatic interpretation
of the wave-function, directly follows as a basic theorem which only uses the
geometrical gluing conditions of psi^D/psi at q=\pm\infty as implied by the EP.
As a result, the EP itself implies a dynamical equation that does not require
any further assumption and reproduces both tunnelling and energy quantization.
Several features of the formulation show how the Copenhagen interpretation
hides the underlying nature of QM. Finally, the non-stationary higher
dimensional quantum HJ equation and the relativistic extension are derived.Comment: 1+3+140 pages, LaTeX. Invariance of the wave-function under the
action of SL(2,R) subgroups acting on the reduced action explicitly reveals
that the wave-function describes only equivalence classes of Planck length
deterministic physics. New derivation of the Schwarzian derivative from the
cocycle condition. "Legendre brackets" introduced to further make "Legendre
duality" manifest. Introduction now contains examples and provides a short
pedagogical review. Clarifications, conclusions, ackn. and references adde
Band-Limited Coronagraphs using a halftone-dot process: II. Advances and laboratory results for arbitrary telescope apertures
The band-limited coronagraph is a nearly ideal concept that theoretically
enables perfect cancellation of all the light of an on-axis source. Over the
past years, several prototypes have been developed and tested in the
laboratory, and more emphasis is now on developing optimal technologies that
can efficiently deliver the expected high-contrast levels of such a concept.
Following the development of an early near-IR demonstrator, we present and
discuss the results of a second-generation prototype using halftone-dot
technology. We report improvement in the accuracy of the control of the local
transmission of the manufactured prototype, which was measured to be less than
1%.
This advanced H-band band-limited device demonstrated excellent contrast
levels in the laboratory, down to 10-6 at farther angular separations than 3
lambda/D over 24% spectral bandwidth. These performances outperform the ones of
our former prototype by more than an order of magnitude and confirm the
maturity of the manufacturing process.
Current and next generation high-contrast instruments can directly benefit
from such capabilities. In this context, we experimentally examine the ability
of the band-limited coronagraph to withstand various complex telescope
apertures.Comment: Accepted in ApJ - under pres
Advanced tracking systems design and analysis
The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk
Unexpected cell type-dependent effects of autophagy on polyglutamine aggregation revealed by natural genetic variation in C. elegans.
BACKGROUND: Monogenic protein aggregation diseases, in addition to cell selectivity, exhibit clinical variation in the age of onset and progression, driven in part by inter-individual genetic variation. While natural genetic variants may pinpoint plastic networks amenable to intervention, the mechanisms by which they impact individual susceptibility to proteotoxicity are still largely unknown.
RESULTS: We have previously shown that natural variation modifies polyglutamine (polyQ) aggregation phenotypes in C. elegans muscle cells. Here, we find that a genomic locus from C. elegans wild isolate DR1350 causes two genetically separable aggregation phenotypes, without changing the basal activity of muscle proteostasis pathways known to affect polyQ aggregation. We find that the increased aggregation phenotype was due to regulatory variants in the gene encoding a conserved autophagy protein ATG-5. The atg-5 gene itself conferred dosage-dependent enhancement of aggregation, with the DR1350-derived allele behaving as hypermorph. Surprisingly, increased aggregation in animals carrying the modifier locus was accompanied by enhanced autophagy activation in response to activating treatment. Because autophagy is expected to clear, not increase, protein aggregates, we activated autophagy in three different polyQ models and found a striking tissue-dependent effect: activation of autophagy decreased polyQ aggregation in neurons and intestine, but increased it in the muscle cells.
CONCLUSIONS: Our data show that cryptic natural variants in genes encoding proteostasis components, although not causing detectable phenotypes in wild-type individuals, can have profound effects on aggregation-prone proteins. Clinical applications of autophagy activators for aggregation diseases may need to consider the unexpected divergent effects of autophagy in different cell types
Probing the Upper Scorpius mass function in the planetary-mass regime
We present the results of a deep ZYJ near-infrared survey of 13.5 square
degrees in the Upper Scorpius (USco) OB association. We photometrically
selected ~100 cluster member candidates with masses in the range 30-5 Jupiters,
according to state-of-the-art evolutionary models. We identified 67 ZYJ
candidates as bona-fide members, based on complementary photometry and
astrometry. We also extracted five candidates detected with VISTA at YJ-only.
One is excluded using deep optical z-band imaging, while two are likely
non-members, and three remain as potential members. We conclude that the USco
mass function is more likely decreasing in the planetary-mass regime (although
a flat mass function cannot yet be discarded), consistent with surveys in other
regions.Comment: Accepted by MNRAS, 10 pages, 4 figures, 4 tables (2 electronic
tables). New version with updated figure3 where the (Z-J,Z) colour-magnitude
diagram is include
- …
