10,195 research outputs found
Interference, reduced action, and trajectories
Instead of investigating the interference between two stationary, rectilinear
wave functions in a trajectory representation by examining the two rectilinear
wave functions individually, we examine a dichromatic wave function that is
synthesized from the two interfering wave functions. The physics of
interference is contained in the reduced action for the dichromatic wave
function. As this reduced action is a generator of the motion for the
dichromatic wave function, it determines the dichromatic wave function's
trajectory. The quantum effective mass renders insight into the behavior of the
trajectory. The trajectory in turn renders insight into quantum nonlocality.Comment: 12 pages text, 5 figures. Typos corrected. Author's final submission.
A companion paper to "Welcher Weg? A trajectory representation of a quantum
Young's diffraction experiment", quant-ph/0605121. Keywords: interference,
nonlocality, trajectory representation, entanglement, dwell time, determinis
An Assessment of an Experimental Surgery Scheme in General Practice
A study of aspects of the work and of the opinions of patients and staff was made at times over a period of two years before and one year after the opening of an experimental surgery tmit specially designed for a particular way of organising the doctor/nurse team in general practice. The investigation took place in a busy group practice of three doctors caring between them for over
9000 patients living in a London borough
Generalized vegetation map of north Merrit Island based on a simplified multispectral analysis
A simplified system for classification of multispectral data was used for making a generalized map of ground features of North Merritt Island. Subclassification of vegetation within broad categories yielded promising results which led to a completely automatic method and to the production of satisfactory detailed maps. Changes in an area north of Happy Hammocks are evidently related to water relations of the soil and are not associated with the last winter freeze-damage which affected mainly the mangrove species, likely to reestablish themselves by natural processes. A supplementary investigation involving reflectance studies in the laboratory has shown that the reflectance by detached citrus leaves, of wavelengths lying between 400 microns and 700 microns, showed some variation over a period of seven days during which the leaves were kept in a laboratory atmosphere
The high energy limit of the trajectory representation of quantum mechanics
The trajectory representation in the high energy limit (Bohr correspondence
principle) manifests a residual indeterminacy. This indeterminacy is compared
to the indeterminacy found in the classical limit (Planck's constant to 0)
[Int. J. Mod. Phys. A 15, 1363 (2000)] for particles in the classically allowed
region, the classically forbiden region, and near the WKB turning point. The
differences between Bohr's and Planck's principles for the trajectory
representation are compared with the differences between these correspondence
principles for the wave representation. The trajectory representation in the
high energy limit is shown to go to neither classical nor statistical
mechanics. The residual indeterminacy is contrasted to Heisenberg uncertainty.
The relationship between indeterminacy and 't Hooft's information loss and
equivalence classes is investigated.Comment: 12 pages of LaTeX. No figures. Incorporated into the "Proceedings of
the Seventh International Wigner Symposium" (ed. M. E. Noz), 24-29 August
2001, U. of Maryland. Proceedings available at
http://www.physics.umd.edu/robo
The Equivalence Postulate of Quantum Mechanics
The Equivalence Principle (EP), stating that all physical systems are
connected by a coordinate transformation to the free one with vanishing energy,
univocally leads to the Quantum Stationary HJ Equation (QSHJE). Trajectories
depend on the Planck length through hidden variables which arise as initial
conditions. The formulation has manifest p-q duality, a consequence of the
involutive nature of the Legendre transform and of its recently observed
relation with second-order linear differential equations. This reflects in an
intrinsic psi^D-psi duality between linearly independent solutions of the
Schroedinger equation. Unlike Bohm's theory, there is a non-trivial action even
for bound states. No use of any axiomatic interpretation of the wave-function
is made. Tunnelling is a direct consequence of the quantum potential which
differs from the usual one and plays the role of particle's self-energy. The
QSHJE is defined only if the ratio psi^D/psi is a local self-homeomorphism of
the extended real line. This is an important feature as the L^2 condition,
which in the usual formulation is a consequence of the axiomatic interpretation
of the wave-function, directly follows as a basic theorem which only uses the
geometrical gluing conditions of psi^D/psi at q=\pm\infty as implied by the EP.
As a result, the EP itself implies a dynamical equation that does not require
any further assumption and reproduces both tunnelling and energy quantization.
Several features of the formulation show how the Copenhagen interpretation
hides the underlying nature of QM. Finally, the non-stationary higher
dimensional quantum HJ equation and the relativistic extension are derived.Comment: 1+3+140 pages, LaTeX. Invariance of the wave-function under the
action of SL(2,R) subgroups acting on the reduced action explicitly reveals
that the wave-function describes only equivalence classes of Planck length
deterministic physics. New derivation of the Schwarzian derivative from the
cocycle condition. "Legendre brackets" introduced to further make "Legendre
duality" manifest. Introduction now contains examples and provides a short
pedagogical review. Clarifications, conclusions, ackn. and references adde
- …
