480 research outputs found
Mycobacterial Antigen Driven Activation of CD14++CD16- Monocytes Is a Predictor of Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome.
Accounting for centre-effects in multicentre trials with a binary outcome - when, why, and how?
BACKGROUND: It is often desirable to account for centre-effects in the analysis of multicentre randomised trials, however it is unclear which analysis methods are best in trials with a binary outcome. METHODS: We compared the performance of four methods of analysis (fixed-effects models, random-effects models, generalised estimating equations (GEE), and Mantel-Haenszel) using a re-analysis of a previously reported randomised trial (MIST2) and a large simulation study. RESULTS: The re-analysis of MIST2 found that fixed-effects and Mantel-Haenszel led to many patients being dropped from the analysis due to over-stratification (up to 69% dropped for Mantel-Haenszel, and up to 33% dropped for fixed-effects). Conversely, random-effects and GEE included all patients in the analysis, however GEE did not reach convergence. Estimated treatment effects and p-values were highly variable across different analysis methods. The simulation study found that most methods of analysis performed well with a small number of centres. With a large number of centres, fixed-effects led to biased estimates and inflated type I error rates in many situations, and Mantel-Haenszel lost power compared to other analysis methods in some situations. Conversely, both random-effects and GEE gave nominal type I error rates and good power across all scenarios, and were usually as good as or better than either fixed-effects or Mantel-Haenszel. However, this was only true for GEEs with non-robust standard errors (SEs); using a robust ‘sandwich’ estimator led to inflated type I error rates across most scenarios. CONCLUSIONS: With a small number of centres, we recommend the use of fixed-effects, random-effects, or GEE with non-robust SEs. Random-effects and GEE with non-robust SEs should be used with a moderate or large number of centres
Assessing potential sources of clustering in individually randomised trials
Recent reviews have shown that while clustering is extremely common in individually randomised trials (for example, clustering within centre, therapist, or surgeon), it is rarely accounted for in the trial analysis. Our aim is to develop a general framework for assessing whether potential sources of clustering must be accounted for in the trial analysis to obtain valid type I error rates (non-ignorable clustering), with a particular focus on individually randomised trials
Risk of selection bias in randomised trials
Background: Selection bias occurs when recruiters selectively enrol patients into the trial based on what the next treatment allocation is likely to be. This can occur even if appropriate allocation concealment is used if recruiters can guess the next treatment assignment with some degree of accuracy. This typically occurs in unblinded trials when restricted randomisation is implemented to force the number of patients in each arm or within each centre to be the same. Several methods to reduce the risk of selection bias have been suggested; however, it is unclear how often these techniques are used in practice. Methods: We performed a review of published trials which were not blinded to assess whether they utilised methods for reducing the risk of selection bias. We assessed the following techniques: (a) blinding of recruiters; (b) use of simple randomisation; (c) avoidance of stratification by site when restricted randomisation is used; (d) avoidance of permuted blocks if stratification by site is used; and (e) incorporation of prognostic covariates into the randomisation procedure when restricted randomisation is used. We included parallel group, individually randomised phase III trials published in four general medical journals (BMJ, Journal of the American Medical Association, The Lancet, and New England Journal of Medicine) in 2010. Results: We identified 152 eligible trials. Most trials (98%) provided no information on whether recruiters were blind to previous treatment allocations. Only 3% of trials used simple randomisation; 63% used some form of restricted randomisation, and 35% did not state the method of randomisation. Overall, 44% of trials were stratified by site of recruitment; 27% were not, and 29% did not report this information. Most trials that did stratify by site of recruitment used permuted blocks (58%), and only 15% reported using random block sizes. Many trials that used restricted randomisation also included prognostic covariates in the randomisation procedure (56%). Conclusions: The risk of selection bias could not be ascertained for most trials due to poor reporting. Many trials which did provide details on the randomisation procedure were at risk of selection bias due to a poorly chosen randomisation methods. Techniques to reduce the risk of selection bias should be more widely implemented
New interpolation and smoothing techniques for nonlinear models
Abstract-Non-linear models in circuit simulation software often show a bad convergence behavior. In many cases, this behavior results from non-smooth intrinsic equivalent circuit element behavior due to measurement or extraction inaccuracies. In our paper we present a new method for smoothing and interpolating n-dimensional grids of equivalent circuit elements using an FFT approach. Furthermore, we demonstrate the influence of model smoothness to a harmonic balance simulation
Effect of fenugreek (Trigonella foenum-graecum L.) intake on glycemia: A meta-analysis of clinical trials
10.1186/1475-2891-13-7Nutrition Journal131
UD Spirit Flags will Show Game Day Pride in University
News release announces that UD spirit flags will be available for purchase to show pride on game days
- …
