213 research outputs found
Understanding and engineering phonon-mediated tunneling into graphene on metal surfaces
Metal-intercalated graphene on Ir(111) exhibits phonon signatures in
inelastic elec- tron tunneling spectroscopy with strengths that depend on the
intercalant. Extraor- dinarily strong graphene phonon signals are observed for
Cs intercalation. Li interca- lation likewise induces clearly discriminable
phonon signatures, albeit less pronounced than observed for Cs. The signal can
be finely tuned by the alkali metal coverage and gradually disappears upon
increasing the junction conductance from tunneling to con- tact ranges. In
contrast to Cs and Li, for Ni-intercalated graphene the phonon signals stay
below the detection limit in all transport ranges. Going beyond the
conventional two-terminal approach, transport calculations provide a
comprehensive understanding of the subtle interplay between the
graphene{electrode coupling and the observation of graphene phonon
spectroscopic signatures
A possible source of spin-polarized electrons: The inert graphene/Ni(111) system
We report on an investigation of spin-polarized secondary electron emission
from the chemically inert system: graphene/Ni(111). An ordered passivated
graphene layer (monolayer of graphite, MG) was formed on Ni(111) surface via
cracking of propylene gas. The spin-polarization of the secondary electrons
obtained from this system upon photoemission is only slightly lower than the
one from the clean Ni surface, but does not change upon large oxygen exposure.
These results suggest to use such passivated Ni(111) surface as a source of
spin-polarized electrons stable against adsorption of reactive gases.Comment: 11 pages, 3 figure
Graphene on Rh(111): STM and AFM studies
The electronic and crystallographic structure of the graphene/Rh(111) moir\'e
lattice is studied via combination of density-functional theory calculations
and scanning tunneling and atomic force microscopy (STM and AFM). Whereas the
principal contrast between hills and valleys observed in STM does not depend on
the sign of applied bias voltage, the contrast in atomically resolved AFM
images strongly depends on the frequency shift of the oscillating AFM tip. The
obtained results demonstrate the perspectives of application atomic force
microscopy/spectroscopy for the probing of the chemical contrast at the
surface.Comment: manuscript and supplementary information; submitted to Appl. Phys.
Lett. on 01.03.201
Electronic and magnetic properties of the graphene-ferromagnet interface
The article presents the work on the investigation of the surface structure
as well as electronic and magnetic properties of graphene layer on a lattice
matched surface of a ferromagnetic material, Ni(111).Comment: accepted in New J. Phy
Induced magnetism of carbon atoms at the graphene/Ni(111) interface
We report an element-specific investigation of electronic and magnetic
properties of the graphene/Ni(111) system. Using magnetic circular dichroism,
the occurrence of an induced magnetic moment of the carbon atoms in the
graphene layer aligned parallel to the Ni 3d magnetization is observed. We
attribute this magnetic moment to the strong hybridization between C and
Ni 3d valence band states. The net magnetic moment of carbon in the graphene
layer is estimated to be in the range of per atom.Comment: 10 pages, 3 figure
Electronic structure, imaging contrast and chemical reactivity of graphene moir\'e on metals
Realization of graphene moir\'e superstructures on the surface of 4d and 5d
transition metals offers templates with periodically modulated electron
density, which is responsible for a number of fascinating effects, including
the formation of quantum dots and the site selective adsorption of organic
molecules or metal clusters on graphene. Here, applying the combination of
scanning probe microscopy/spectroscopy and the density functional theory
calculations, we gain a profound insight into the electronic and topographic
contributions to the imaging contrast of the epitaxial graphene/Ir(111) system.
We show directly that in STM imaging the electronic contribution is prevailing
compared to the topographic one. In the force microscopy and spectroscopy
experiments we observe a variation of the interaction strength between the tip
and high-symmetry places within the graphene moir\'e supercell, which determine
the adsorption cites for molecules or metal clusters on graphene/Ir(111).Comment: submitted on Sep, 6th 201
An Artificially Lattice Mismatched Graphene/Metal Interface: Graphene/Ni/Ir(111)
We report the structural and electronic properties of an artificial
graphene/Ni(111) system obtained by the intercalation of a monoatomic layer of
Ni in graphene/Ir(111). Upon intercalation, Ni grows epitaxially on Ir(111),
resulting in a lattice mismatched graphene/Ni system. By performing Scanning
Tunneling Microscopy (STM) measurements and Density Functional Theory (DFT)
calculations, we show that the intercalated Ni layer leads to a pronounced
buckling of the graphene film. At the same time an enhanced interaction is
measured by Angle-Resolved Photo-Emission Spectroscopy (ARPES), showing a clear
transition from a nearly-undisturbed to a strongly-hybridized graphene
-band. A comparison of the intercalation-like graphene system with flat
graphene on bulk Ni(111), and mildly corrugated graphene on Ir(111), allows to
disentangle the two key properties which lead to the observed increased
interaction, namely lattice matching and electronic interaction. Although the
latter determines the strength of the hybridization, we find an important
influence of the local carbon configuration resulting from the lattice
mismatch.Comment: 9 pages, 3 figures, Accepted for publication in Phys. Rev.
Structure of self-organized Fe clusters grown on Au(111) analyzed by Grazing Incidence X-Ray Diffraction
We report a detailed investigation of the first stages of the growth of
self-organized Fe clusters on the reconstructed Au(111) surface by grazing
incidence X-ray diffraction. Below one monolayer coverage, the Fe clusters are
in "local epitaxy" whereas the subsequent layers adopt first a strained fcc
lattice and then a partly relaxed bcc(110) phase in a Kurdjumov-Sachs epitaxial
relationship. The structural evolution is discussed in relation with the
magnetic properties of the Fe clusters.Comment: 7 pages, 6 figures, submitted to Physical Review B September 200
Spatially resolved variations in reflectivity across iron oxide thin films
The spin polarising properties of the iron oxide magnetite (Fe3O4) make it attractive for use in spintronic devices, but its sensitivity to compositional and structural variations make it challenging to prepare reli- ably. Infrared microspectroscopy and modelling are used to determine the spatial variation in the chem- ical composition of three thin films of iron oxide; one prepared by pulsed laser deposition (PLD), one by molecular beam epitaxy (MBE) deposition of iron whilst simultaneously flowing oxygen into the chamber and one by flowing oxygen only once deposition is complete. The technique is easily able to distinguish between films which contain metallic iron and different iron oxide phases as well as spatial variations in composition across the films. The film grown by post-oxidising iron is spatially uniform but not fully oxi- dised, the film grown by simultaneously oxidising iron showed spatial variation in oxide composition while the film grown by PLD was spatially uniform magnetite
- …
