255 research outputs found
Excitonic properties of strained wurtzite and zinc-blende GaN/Al(x)Ga(1-x)N quantum dots
We investigate exciton states theoretically in strained GaN/AlN quantum dots
with wurtzite (WZ) and zinc-blende (ZB) crystal structures, as well as strained
WZ GaN/AlGaN quantum dots. We show that the strain field significantly modifies
the conduction and valence band edges of GaN quantum dots. The piezoelectric
field is found to govern excitonic properties of WZ GaN/AlN quantum dots, while
it has a smaller effect on WZ GaN/AlGaN, and very little effect on ZB GaN/AlN
quantum dots. As a result, the exciton ground state energy in WZ GaN/AlN
quantum dots, with heights larger than 3 nm, exhibits a red shift with respect
to the bulk WZ GaN energy gap. The radiative decay time of the red-shifted
transitions is large and increases almost exponentially from 6.6 ns for quantum
dots with height 3 nm to 1100 ns for the quantum dots with height 4.5 nm. In WZ
GaN/AlGaN quantum dots, both the radiative decay time and its increase with
quantum dot height are smaller than those in WZ GaN/AlN quantum dots. On the
other hand, the radiative decay time in ZB GaN/AlN quantum dots is of the order
of 0.3 ns, and is almost independent of the quantum dot height. Our results are
in good agreement with available experimental data and can be used to optimize
GaN quantum dot parameters for proposed optoelectronic applications.Comment: 18 pages, accepted for publication in the Journal of Applied Physic
Photoluminescence of tetrahedral quantum-dot quantum wells
Taking into account the tetrahedral shape of a quantum dot quantum well
(QDQW) when describing excitonic states, phonon modes and the exciton-phonon
interaction in the structure, we obtain within a non-adiabatic approach a
quantitative interpretation of the photoluminescence (PL) spectrum of a single
CdS/HgS/CdS QDQW. We find that the exciton ground state in a tetrahedral QDQW
is bright, in contrast to the dark ground state for a spherical QDQW.Comment: 4 pages, 2 figure
Photoluminescence of tetrahedral quantum-dot quantum wells
Taking into account the tetrahedral shape of a quantum dot quantum well
(QDQW) when describing excitonic states, phonon modes and the exciton-phonon
interaction in the structure, we obtain within a non-adiabatic approach a
quantitative interpretation of the photoluminescence spectrum of a single
CdS/HgS/CdS QDQW. We find that the exciton ground state in a tetrahedral QDQW
is bright, in contrast to the dark ground state for a spherical QDQW. The
position of the phonon peaks in the photoluminescence spectrum is attributed to
interface optical phonons. We also show that the experimental value of the
Huang-Rhys parameter can be obtained only within the nonadiabatic theory of
phonon-assisted transitions.Comment: 4 pages, 4 figures, E-mail addresses: [email protected],
[email protected], [email protected], [email protected],
to be published in Phys. Rev. Letter
Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems
Development of robust dynamical systems and networks such as autonomous
aircraft systems capable of accomplishing complex missions faces challenges due
to the dynamically evolving uncertainties coming from model uncertainties,
necessity to operate in a hostile cluttered urban environment, and the
distributed and dynamic nature of the communication and computation resources.
Model-based robust design is difficult because of the complexity of the hybrid
dynamic models including continuous vehicle dynamics, the discrete models of
computations and communications, and the size of the problem. We will overview
recent advances in methodology and tools to model, analyze, and design robust
autonomous aerospace systems operating in uncertain environment, with stress on
efficient uncertainty quantification and robust design using the case studies
of the mission including model-based target tracking and search, and trajectory
planning in uncertain urban environment. To show that the methodology is
generally applicable to uncertain dynamical systems, we will also show examples
of application of the new methods to efficient uncertainty quantification of
energy usage in buildings, and stability assessment of interconnected power
networks
Spin-orbit coupling and crystal-field splitting in the electronic and optical properties of nitride quantum dots with a wurtzite crystal structure
We present an tight-binding model for the calculation of the
electronic and optical properties of wurtzite semiconductor quantum dots (QDs).
The tight-binding model takes into account strain, piezoelectricity, spin-orbit
coupling and crystal-field splitting. Excitonic absorption spectra are
calculated using the configuration interaction scheme. We study the electronic
and optical properties of InN/GaN QDs and their dependence on structural
properties, crystal-field splitting, and spin-orbit coupling.Comment: 9 pages, 6 figure
Modulation of stimulated emission of ZnO nanowire based on electromechanical vibration
An optical modulator is proposed using a double-clamped nanoelectromechanical resonator. Electromechanical–optical analysis has been performed to validate the idea. The electromechanical simulation involves the nonlocal effect as the resonator is in nanometer scale. Stimulated emission theory has been used to model the luminescence of the nanowire due to the addition of piezoelectric charges subjected to mechanical strains. Results successfully demonstrate both the intensity modulation and frequency filtering, providing an integrated solution in applications such as quantum entanglement experiments
Theory of band gap bowing of disordered substitutional II-VI and III-V semiconductor alloys
For a wide class of technologically relevant compound III-V and II-VI
semiconductor materials AC and BC mixed crystals (alloys) of the type
A(x)B(1-x)C can be realized. As the electronic properties like the bulk band
gap vary continuously with x, any band gap in between that of the pure AC and
BC systems can be obtained by choosing the appropriate concentration x, granted
that the respective ratio is miscible and thermodynamically stable. In most
cases the band gap does not vary linearly with x, but a pronounced bowing
behavior as a function of the concentration is observed. In this paper we show
that the electronic properties of such A(x)B(1-x)C semiconductors and, in
particular, the band gap bowing can well be described and understood starting
from empirical tight binding models for the pure AC and BC systems. The
electronic properties of the A(x)B(1-x)C system can be described by choosing
the tight-binding parameters of the AC or BC system with probabilities x and
1-x, respectively. We demonstrate this by exact diagonalization of finite but
large supercells and by means of calculations within the established coherent
potential approximation (CPA). We apply this treatment to the II-VI system
Cd(x)Zn(1-x)Se, to the III-V system In(x)Ga(1-x)As and to the III-nitride
system Ga(x)Al(1-x)N.Comment: 14 pages, 10 figure
Electron and hole states in quantum-dot quantum wells within a spherical 8-band model
In order to study heterostructures composed both of materials with strongly
different parameters and of materials with narrow band gaps, we have developed
an approach, which combines the spherical 8-band effective-mass Hamiltonian and
the Burt's envelope function representation. Using this method, electron and
hole states are calculated in CdS/HgS/CdS/H_2O and CdTe/HgTe/CdTe/H_2O
quantum-dot quantum-well heterostructures. Radial components of the wave
functions of the lowest S and P electron and hole states in typical quantum-dot
quantum wells (QDQWs) are presented as a function of radius. The 6-band-hole
components of the radial wave functions of an electron in the 8-band model have
amplitudes comparable with the amplitude of the corresponding 2-band-electron
component. This is a consequence of the coupling between the conduction and
valence bands, which gives a strong nonparabolicity of the conduction band. At
the same time, the 2-band-electron component of the radial wave functions of a
hole in the 8-band model is small compared with the amplitudes of the
corresponding 6-band-hole components. It is shown that in the CdS/HgS/CdS/H_2O
QDQW holes in the lowest states are strongly localized in the well region
(HgS). On the contrary, electrons in this QDQW and both electron and holes in
the CdTe/HgTe/CdTe/H_2O QDQW are distributed through the entire dot. The
importance of the developed theory for QDQWs is proven by the fact that in
contrast to our rigorous 8-band model, there appear spurious states within the
commonly used symmetrized 8-band model.Comment: 15 pages, 5 figures, E-mail addresses: [email protected],
[email protected]
Size distributions of cadmium sulfide nanoparticles obtained from templating methods
Cadmium sulfide (CdS) nanoparticles were obtained by soft templating methods using either an already established revered micelle route or a new procedure based on gel electrophoresis. The UV-Vis absorption or the photoluminescence excitation spectra were fitted using the CdS electronic structure available in the literature together with a size distribution. The obtained results indicate that the amount of sodium dodecyl sulphate as a component of the agarose gel formulation has a profound effect on the resulting nanoparticle population. © 2008 New York Academy of Sciences.(undefined
Development of an eight-band theory for quantum-dot heterostructures
We derive a nonsymmetrized 8-band effective-mass Hamiltonian for quantum-dot
heterostructures (QDHs) in Burt's envelope-function representation. The 8x8
radial Hamiltonian and the boundary conditions for the Schroedinger equation
are obtained for spherical QDHs. Boundary conditions for symmetrized and
nonsymmetrized radial Hamiltonians are compared with each other and with
connection rules that are commonly used to match the wave functions found from
the bulk kp Hamiltonians of two adjacent materials. Electron and hole energy
spectra in three spherical QDHs: HgS/CdS, InAs/GaAs, and GaAs/AlAs are
calculated as a function of the quantum dot radius within the approximate
symmetrized and exact nonsymmetrized 8x8 models. The parameters of dissymmetry
are shown to influence the energy levels and the wave functions of an electron
and a hole and, consequently, the energies of both intraband and interband
transitions.Comment: 36 pages, 10 figures, E-mail addresses: [email protected],
[email protected]
- …
