22,161 research outputs found
Droplet mixer based on siphon-induced flow discretization and phase shifting
We present a novel mixing principle for centrifugal microfluidic platforms. Siphon structures are designed to disrupt continuous flows in a controlled manner into a sequence of discrete droplets, displaying individual volumes as low as 60 nL. When discrete volumes of different liquids are alternately issued into a common reservoir, a striation pattern of alternating liquid layers is obtained. In this manner diffusion distances are drastically decreased and a fast and homogeneous mixing is achieved. Efficient mixing is demonstrated for a range of liquid combinations of varying fluid properties such as aqueous inks or saline solutions and human plasma. Volumes of 5 muL have been mixed in less than 20 s to a high mixing quality. One-step dilutions of plasma in a standard phosphate buffer solution up to 1:5 are also demonstrated
Umbuzeiro (Spondia tuberosa, Arr. Câm) de frutos gigantes.
O umbuzeiro é originado dos chapadões semi-áridos do Nordeste brasileiro (Piauí, Paraíba, Pernambuco e Bahia) e do Norte de Minas Gerais. Até o momento, essa planta não foi difundida para nenhum outro país, sendo possível sua adaptação para outras regiões secas fora do país de origem. Árvore de pequeno porte (6 m de altura), de tronco curto, copa em forma de guarda-chuva (10 a 15 m de diâmetro), xerófita e de vida longa (mais de 100 anos), possui raiz túbera ou batata (xilopódio), onde armazena água, mucilagem, glicose, taninos, entre outras).bitstream/item/25866/1/http-agrosoft.com-pdfID27248Fonseca.pdfDisponível em: Acesso em: 21 jan. 2011
Dynamical star-disk interaction in the young stellar system V354 Mon
The main goal of this work is to characterize the mass accretion and ejection
processes of the classical T Tauri star V354 Mon, a member of the young stellar
cluster NGC 2264. In March 2008, photometric and spectroscopic observations of
V354 Mon were obtained simultaneously with the CoRoT satellite, the 60 cm
telescope at the Observat\'orio Pico dos Dias (LNA - Brazil) equipped with a
CCD camera and Johnson/Cousins BVRI filters, and the SOPHIE \'echelle
spectrograph at the Observatoire de Haute-Provence (CNRS - France). The light
curve of V354 Mon shows periodical minima (P = 5.26 +/- 0.50 days) that vary in
depth and width at each rotational cycle. From the analysis of the photometric
and spectroscopic data, it is possible to identify correlations between the
emission line variability and the light-curve modulation of the young system,
such as the occurrence of pronounced redshifted absorption in the H_alpha line
at the epoch of minimum flux. This is evidence that during photometric minima
we see the accretion funnel projected onto the stellar photosphere in our line
of sight, implying that the hot spot coincides with the light-curve minima. We
applied models of cold and hot spots and a model of occultation by
circumstellar material to investigate the source of the observed photometric
variations. We conclude that nonuniformly distributed material in the inner
part of the circumstellar disk is the main cause of the photometric modulation,
which does not exclude the presence of hot and cold spots at the stellar
surface. It is believed that the distortion in the inner part of the disk is
created by the dynamical interaction between the stellar magnetosphere,
inclined with respect to the rotation axis, and the circumstellar disk, as also
observed in the classical T Tauri star AA Tau and predicted by
magnetohydrodynamical numerical simulations.Comment: Accepted by Astronomy and Astrophysic
On Dirac-like Monopoles in a Lorentz- and CPT-violating Electrodynamics
We study magnetic monopoles in a Lorentz- and CPT-odd electrodynamical
framework in (3+1) dimensions. This is the standard Maxwell model extended by
means of a Chern-Simons-like term, (
constant), which respects gauge invariance but violates both Lorentz and CPT
symmetries (as a consequence, duality is also lost). Our main interest concerns
the analysis of the model in the presence of Dirac monopoles, so that the
Bianchi identity no longer holds, which naively yields the non-conservation of
electric charge. Since gauge symmetry is respected, the issue of charge
conservation is more involved. Actually, the inconsistency may be circumvented,
if we assume that the appearance of a monopole induces an extra electric
current. The reduction of the model to (2+1) dimensions in the presence of both
the magnetic sources and Lorentz-violating terms is presented. There, a
quantization condition involving the scalar remnant of , say, the mass
parameter, is obtained. We also point out that the breaking of duality may be
associated with an asymmetry between electric and magnetic sources in this
background, so that the electromagnetic force experienced by a magnetic pole is
supplemented by an extra term proportional to , whenever compared to the
one acting on an electric charge.Comment: 10 pages, no figures, typed in te
Participatory varietal selection of potato using the mother & baby trial design: A gender-responsive trainer’s guide.
This guide aims to provide step-by-step guidance on facilitating and documenting the PVS dynamics using the MBT design to select, and eventually release, potato varieties preferred by end-users that suit male and female farmers ’different needs, diverse agro-systems, and management practices, as well as traders ’and consumers’ preferences
Recommended from our members
A microstructure-based finite element analysis of the response of sand
This paper presents a novel contribution towards understanding the stress distribution amongst the constituent grains of an intact sand under loading. Photoelasticity using birefringent materials has shown that forces in granular media are transmitted from particle-to-particle via their contacts and the mode of load propagation forms a complex force network. Particles carrying above average load appear to form a network with special characteristics where stronger forces are carried through chain-like particle groups, often referred as force chains. Fonseca et al. (2013) showed that for a sand under shearing, the contact normals tend to be orientated along the direction of the major principal stress, which suggests the formation of force chains. Moreover, these quasi-vertically oriented vectors were shown to be associated with contacts having large surface areas, contributing to the formation of solid columnar structures of stress transmitting grains. This early study demonstrates that a full characterization of force chains for real soils requires accounting for the effects of the soil microstructure, including grain morphology and contact topology, which the idealized nature of the particles used for discrete element method simulations and photoelasticity studies cannot capture. In the present work, high resolution x-ray tomographic data of an intact sand is converted into a two dimensional finite element mesh, so that the microstructural details, such as the geometrical arrangement of the grains and pores, as well as grain shape and contact topology are incorporated in the model. In other words, the soil microstructure is modelled using a computation approach that considers all available geometrical data. The results suggested that the ability of the grains to transmit stress via their contacts is directly associated to the degrees of freedom they have to move and rearrange, which in turn is controlled by the topology of the contacts. The insights into the effects of microstructure on the stress transmission mechanisms provided in this study are fundamental to better understand and predict the macro scale response of soil
Young Measures Generated by Ideal Incompressible Fluid Flows
In their seminal paper "Oscillations and concentrations in weak solutions of
the incompressible fluid equations", R. DiPerna and A. Majda introduced the
notion of measure-valued solution for the incompressible Euler equations in
order to capture complex phenomena present in limits of approximate solutions,
such as persistence of oscillation and development of concentrations.
Furthermore, they gave several explicit examples exhibiting such phenomena. In
this paper we show that any measure-valued solution can be generated by a
sequence of exact weak solutions. In particular this gives rise to a very
large, arguably too large, set of weak solutions of the incompressible Euler
equations.Comment: 35 pages. Final revised version. To appear in Arch. Ration. Mech.
Ana
Thermo-mechanical stresses distribution on bone drilling: numerical and experimental procedures
In bone drilling, the temperature and the level of stresses at the bone tissue are function of the drilling parameters. If certain thresholds are exceeded, irreversible damages may occur on the bone tissue. One of the main challenges in the drilling process is to control the associated parameters and even more important, to avoid the surrounding tissue damage. In this study, a dynamic numerical model is developed to determine the thermo-mechanical stresses generated during the bone drilling, using the finite element method. The numerical model incorporates the geometric and dynamic characteristics involved in the drilling processes, as well the developed temperature inside the material.info:eu-repo/semantics/publishedVersio
- …
