3 research outputs found

    Flavor Changing Neutral Currents involving Heavy Quarks with Four Generations

    Full text link
    We study various FCNC involving heavy quarks in the Standard Model (SM) with a sequential fourth generation. After imposing BXsγB\to X_s\gamma, BXsl+lB\to X_sl^+l^- and ZbbˉZ\to b\bar{b} constraints, we find B(Zsbˉ+sˉb){\cal B}(Z\to s\bar{b}+\bar{s}b) can be enhanced by an order of magnitude to 10710^{-7}, while tcZ,cHt\to cZ, cH decays can reach 10610^{-6}, which are orders of magnitude higher than in SM. However,these rates are still not observable for the near future.With the era of LHC approaching, we focus on FCNC decays involving fourth generation bb^\prime and tt^\prime quarks. We calculate the rates for loop induced FCNC decays bbZ,bH,bg,bγb^\prime\to bZ, bH, bg, b\gamma, as well as t^\prime\to tZ,\tH, tg, t\gamma. If Vcb|V_{cb'}| is of order Vcb0.04|V_{cb}| \simeq 0.04, tree level bcWb^\prime\to cW decay would dominate, posing a challenge since bb-tagging is less effective. For VcbVcb|V_{cb'}| \ll |V_{cb}|, btWb'\to tW would tend to dominate, while btWb'\to t^\prime W^* could also open for heavier bb', leading to thepossibility of quadruple-WW signals via bbˉbbˉW+WW+Wb'\bar b'\to b\bar b W^+W^-W^+W^-. The FCNC bbZ,bHb'\to bZ, bH decays could still dominate if mbm_{b'} is just above 200 GeV. For the case of tt', ingeneral tbWt^\prime\to bW would be dominant, hence it behaves like a heavy top. For both bb' and tt', except for the intriguing light bb' case, FCNC decays are in the 10410210^{-4} -10^{-2} range, and are quite detectable at the LHC.For a possible future ILC, we find the associated production of FCNC e+ebsˉe^+e^-\to b\bar s, tcˉt\bar c are below sensitivity, while e+ebbˉe^+e^-\to b^\prime\bar b andttˉt^\prime\bar t can be better probed.Tevatron Run-II can still probe the lighter bb' or tt' scenario. LHC would either discover the fourth generation and measure the FCNC rates, or rule out the fourth generation conclusively.Comment: 31 pages, 15 eps figures, version to appear in JHE
    corecore