36 research outputs found
A Serum Factor Induces Insulin-Independent Translocation of GLUT4 to the Cell Surface which Is Maintained in Insulin Resistance
In response to insulin, glucose transporter GLUT4 translocates from intracellular compartments towards the plasma membrane where it enhances cellular glucose uptake. Here, we show that sera from various species contain a factor that dose-dependently induces GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes, human adipocytes, myoblasts and myotubes. Notably, the effect of this factor on GLUT4 is fully maintained in insulin-resistant cells. Our studies demonstrate that the serum-induced increase in cell surface GLUT4 levels is not due to inhibition of its internalization and is not mediated by insulin, PDGF, IGF-1, or HGF. Similarly to insulin, serum also augments cell surface levels of GLUT1 and TfR. Remarkably, the acute effect of serum on GLUT4 is largely additive to that of insulin, while it also sensitizes the cells to insulin. In accordance with these findings, serum does not appear to activate the same repertoire of downstream signaling molecules that are implicated in insulin-induced GLUT4 translocation. We conclude that in addition to insulin, at least one other biological proteinaceous factor exists that contributes to GLUT4 regulation and still functions in insulin resistance. The challenge now is to identify this factor
The janus faces of botulinum neurotoxin: Sensational medicine and deadly biological weapon
The botulinum neurotoxins are the most dangerous toxins known (BoNTs serotypes A-G) and induce profound flaccid neuromuscular paralysis by blocking nerve-muscle communication. Poisoned motoneurons react by emitting a sprouting network known to establish novel functional synapses with the abutting muscle fiber. Understanding how our motoneurons are capable of bypassing such transmission blockade, thereby overcoming paralysis, by an astonishing display of plasticity is one of the research goals that have numerous therapeutic ramifications. This Review aims at giving a brief update on the recent discoveries regarding the molecular mechanism of botulinum toxins intoxication. Curing botulism still is a challenge once the toxin has found his way inside motoneurons. In view of the potential use of botulinum toxins as biological weapon, more research is needed to find efficient ways of curing this disease. (C) 2007 Wiley-Liss, Inc
Cytotoxicity of botulinum neurotoxins reveals a direct role of syntaxin 1 and SNAP-25 in neuron survival
Persistence of Botulinum Neurotoxin A Subtypes 1-5 in Primary Rat Spinal Cord Cells
Botulinum neurotoxins (BoNTs) are the most poisonous substances known and cause the severe disease botulism. BoNTs have also been remarkably effective as therapeutics in treating many neuronal and neuromuscular disorders. One of the hallmarks of BoNTs, particularly serotype A, is its long persistence of 2-6 months in patients at concentrations as low as fM or pM. The mechanisms for this persistence are currently unclear. In this study we determined the persistence of the BoNT/A subtypes 1 through 5 in primary rat spinal neurons. Remarkably, the duration of intracellular enzymatic activity of BoNT/A1, /A2, /A4 and /A5 was shown to be at least 10 months. Conversely, the effects of BoNT/A3 were observed for up to ∼5 months. An intermittent dosing with BoNT/E showed intracellular activity of the shorter acting BoNT/E for 2–3 weeks, followed by reoccurrence and persistence of BoNT/A-induced SNAP-25 cleavage products
Extracts from Aralia elata (Miq) Seem alleviate hepatosteatosis via improving hepatic insulin sensitivity
Heavy metal levels in gonad and liver tissues—effects on the reproductive parameters of natural populations of Aphanius facsiatus
Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons
In Huntington's disease (HD), whether transneuronal spreading of mutant huntingtin (mHTT) occurs and its contribution to non-cell autonomous damage in brain networks is largely unknown. We found mHTT spreading in three different neural network models: human neurons integrated in the neural network of organotypic brain slices of HD mouse model, an ex vivo corticostriatal slice model and the corticostriatal pathway in vivo. Transneuronal propagation of mHTT was blocked by two different botulinum neurotoxins, each known for specifically inactivating a single critical component of the synaptic vesicle fusion machinery. Moreover, healthy human neurons in HD mouse model brain slices displayed non-cell autonomous changes in morphological integrity that were more pronounced when these neurons bore mHTT aggregates. Altogether, our findings suggest that transneuronal propagation of mHTT might be an important and underestimated contributor to the pathophysiology of HD
