199 research outputs found

    R Aquarii spectra revisited by SUMA

    Get PDF
    We analyse the optical spectra and the UV spectral evolution of the jets and of the HII region inside the R Aquarii binary system by the code SUMA which consistently accounts for shock and photoionization. The temperature of the hot star results 80,000 K as for a white dwarf. We find that the shock velocity in the NE jet increased between 1983 and 1989. The spectral evolution between 1989 and 1991 of the SW jet indicates that a larger contribution from low density-velocity matter affects the 1991 spectra. The evolution of the UV spectra from 8/11/1980 to 26/5/1991 in the HII region indicates that the reverse shock is actually a standing shock. The results obtained by modelling the line spectra are cross-checked by the fit of the continuum SED. It is found that a black-body temperature of 2800 K reproduces the radiation from the red giant. A black-body emission component corresponding to 1000 K is emitted by dust in the surrounding of the red giant. Model calculations confirm that the radio emission is of thermal origin. We found that the NE jet bulk emission is at a distance of about 2 (15) cm from the internal system, while the distance of the SW jet bulk is about 6 (14) cm. The distance of the reverse shock from the hot source in the internal region is < 9 (13) cm.Comment: 9 pages, MN LaTeX style (including 6 Tables) + 5 PostScript figures. To appear in The Monthly Notices of the Royal Astronomical Societ

    Discovery of the 1.80 hr Spin Period of the White Dwarf of the Symbiotic System BF Cyg

    Full text link
    We report on the discovery of a coherent periodicity in the B light curve of the symbiotic star BF Cyg. The signal was detected in some sections of the light curve of the star recorded in the year 2003 as double hump periodic variations with an amplitude of ~7 mmag. In the year 2004 the signal was also present in only a subsection of the light curve. In that year, the system was about twice as bright and the amplitude of the oscillations was about half of what it was in 2003. In 2004 the cycle structure was of a single hump, the phase of which coincided with the phase of one of the humps in the 2003 cycle. No periodic signal was detected in a third, short series of observations performed in the year 2007, when the star was three magnitudes brighter than in 2003. We interpret the periodicity as the spin period of the white dwarf component of this interacting binary system. We suggest that the signal in 2003 originated in two hot spots on or near the surface of the white dwarf, most likely around the two antipodes of an oblique dipole magnetic field of this star. Magnetic field lines funneled accreted matter from the wind of the cool component to the pole areas, where the falling material created the hot spots. This process is apparently intermittent in its nature. In 2004, the activity near only one pole was enhanced enough to raise the signal above the threshold of our detection ability.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    The historical light curve of the symbiotic star AG Draconis: intense, magnetically induced cyclic activity

    Full text link
    We analyze an optical light curve of the symbiotic system AG Draconis covering the last 120 years of its history. During the first 32 years the system was in a quiescence state. Around the year 1922 the star's quiescence luminosity brightened by 0.29 mag. The last 82 years of the light curve (LC) are characterized by a series of outbursts of 1-2 magnitude in brightness and about 100 days in duration. The outbursts are distributed along the time axis in 6 clusters with a quasi-periodic cycle of some 5300 days. The time intervals among the outbursts themselves are integral numbers of the period 373.5 days. During quiescence states the LC oscillates with the binary period of the system of 550 d. The LC contains also a weak periodic signal with a period of 350 d, attributed to pulsations of the giant star. Another period of 1160 d is also present in the light curve, being the sidereal rotation period of the giant star. We suggest that the outbursts are events of intense mass transfer from the giant onto the hot component. These are modulated by an interplay between a solar-like magnetic dynamo cycle operating in the outer layers of the giant, and a tidal deformation of these layers that circulates the surface of the giant with the synodic diurnal period of 373.5 Earth days. AG Dra is the 5th symbiotic system with a light curve that reflects such an intense magnetic and magnetically modulated activity. (Abridged)Comment: 10 pages, 4 figures. Accepted for publication in MNRA

    Modeling RR Tel through the Evolution of the Spectra

    Full text link
    We investigate the evolution of RR Tel after the outburst by fitting the emission spectra in two epochs. The first one (1978) is characterized by large fluctuations in the light curve and the second one (1993) by the slow fading trend. In the frame of a colliding wind model two shocks are present: the reverse shock propagates in the direction of the white dwarf and the other one expands towards or beyond the giant. The results of our modeling show that in 1993 the expanding shock has overcome the system and is propagating in the nearby ISM. The large fluctuations observed in the 1978 light curve result from line intensity rather than from continuum variation. These variations are explained by fragmentation of matter at the time of head-on collision of the winds from the two stars. A high velocity (500 km/s) wind component is revealed from the fit of the SED of the continuum in the X-ray range in 1978, but is quite unobservable in the line profiles. The geometrical thickness of the emitting clumps is the critical parameter which can explain the short time scale variabilities of the spectrum and the trend of slow line intensity decrease.Comment: 26 pages, LaTeX (including 5 Tables) + 6 PostScript figures. To appear in "The Astrophysical Journal

    Discovery of the eclipse in the symbiotic binary Z Andromedae

    Full text link
    Our photometric observations of the symbiotic binary Z And during its recent (2000 -- 2003) active phase revealed a minimum in the U, B and V light curves (LC) at the position of the inferior conjunction of its cool component (the orbital phase 'phi' = 0). This fact and the behaviour of colour indices suggest that the minimum was due to the eclipse of the active hot object by the red giant. Physically plausible fit of the eclipse profile and a precise analysis of the spectral energy distribution (SED) in the ultraviolet continuum suggest a disk-like structure for the hot object during active phases. The present knowledge of fundamental parameters of the system limits the orbital inclination 'i' to 76 - 90 deg. The presence of the Rayleigh attenuated far-UV continuum at 'phi' around 0 during quiescent phase confirms the very high inclination of the Z And orbit.Comment: 4 pages, 3 figures, accepted for Astronomy and Astrophysics as a Lette

    Discovery of a Magnetic White Dwarf in the Symbiotic Binary Z Andromedae

    Get PDF
    We report the first result from our survey of rapid variability in symbiotic binaries: the discovery of a persistent oscillation at P=1682.6 +- 0.6 s in the optical emission from the prototype symbiotic, Z Andromedae. The oscillation was detected on all 8 occasions on which the source was observed over a timespan of nearly a year, making it the first such persistent periodic pulse found in a symbiotic binary. The amplitude was typically 2 - 5 mmag, and it was correlated with the optical brightness during a relatively small outburst of the system. The most natural explanation is that the oscillation arises from the rotation of an accreting, magnetic (B_S > 10^5 G) white dwarf. This discovery constrains the outburst mechanisms, since the oscillation emission region near the surface of the white dwarf was visible during the outburst.Comment: Accepted for publication in the Astrophysical Journal (6 pages, including 4 figures), LaTe

    Simultaneous UBVRI observations of the cataclysmic variable AE Aquarii: temperature and mass of fireballs

    Full text link
    We report simultaneous multicolour observations in 5 bands (UBVRI) of the flickering variability of the cataclysmic variable AE Aqr. Our aim is to estimate the parameters (colours, temperature, size) of the fireballs that produce the optical flares. The observed rise time of the optical flares is in the interval 220 - 440 sec. We estimate the dereddened colours of the fireballs: (U-B)_0 in the range 0.8-1.4, (B-V)_0 ~ 0.03-0.24, (V-I)_0 ~ 0.26-0.78. We find for the fireballs a temperature in the range 10000 - 25000 K, mass (7-90).10^{19} g, size (3-7).10^9 cm (using a distance of d=86 pc). These values refer to the peak of the flares observed in UBVRI bands. The data are available upon request from the authors.Comment: 8 pages, accepted in A
    corecore