253 research outputs found
Towards phase-coherent caloritronics in superconducting circuits
The emerging field of phase-coherent caloritronics (from the Latin word
"calor", i.e., heat) is based on the possibility to control heat currents using
the phase difference of the superconducting order parameter. The goal is to
design and implement thermal devices able to master energy transfer with a
degree of accuracy approaching the one reached for charge transport by
contemporary electronic components. This can be obtained by exploiting the
macroscopic quantum coherence intrinsic to superconducting condensates, which
manifests itself through the Josephson and the proximity effect. Here, we
review recent experimental results obtained in the realization of heat
interferometers and thermal rectifiers, and discuss a few proposals for exotic
non-linear phase-coherent caloritronic devices, such as thermal transistors,
solid-state memories, phase-coherent heat splitters, microwave refrigerators,
thermal engines and heat valves. Besides being very attractive from the
fundamental physics point of view, these systems are expected to have a vast
impact on many cryogenic microcircuits requiring energy management, and
possibly lay the first stone for the foundation of electronic thermal logic.Comment: 11 pages, 6 colour figure
Phase-tunable Josephson thermal router
Since the the first studies of thermodynamics, heat transport has been a
crucial element for the understanding of any thermal system. Quantum mechanics
has introduced new appealing ingredients for the manipulation of heat currents,
such as the long-range coherence of the superconducting condensate. The latter
has been exploited by phase-coherent caloritronics, a young field of
nanoscience, to realize Josephson heat interferometers, which can control
electronic thermal currents as a function of the external magnetic flux. So
far, only one output temperature has been modulated, while multi-terminal
devices that allow to distribute the heat flux among different reservoirs are
still missing. Here, we report the experimental realization of a phase-tunable
thermal router able to control the heat transferred between two terminals
residing at different temperatures. Thanks to the Josephson effect, our
structure allows to regulate the thermal gradient between the output electrodes
until reaching its inversion. Together with interferometers, heat diodes and
thermal memories, the thermal router represents a fundamental step towards the
thermal conversion of non-linear electronic devices, and the realization of
caloritronic logic components.Comment: 9 pages, 5 figure
0- phase-controllable Josephson junction
Two superconductors coupled by a weak link support an equilibrium Josephson
electrical current which depends on the phase difference between the
superconducting condensates [1]. Yet, when a temperature gradient is imposed
across the junction, the Josephson effect manifests itself through a coherent
component of the heat current that flows oppositely to the thermal gradient for
[2-4]. The direction of both the Josephson charge and heat
currents can be inverted by adding a shift to . In the static
electrical case, this effect was obtained in a few systems, e.g. via a
ferromagnetic coupling [5,6] or a non-equilibrium distribution in the weak link
[7]. These structures opened new possibilities for superconducting quantum
logic [6,8] and ultralow power superconducting computers [9]. Here, we report
the first experimental realization of a thermal Josephson junction whose phase
bias can be controlled from to . This is obtained thanks to a
superconducting quantum interferometer that allows to fully control the
direction of the coherent energy transfer through the junction [10]. This
possibility, joined to the completely superconducting nature of our system,
provides temperature modulations with unprecedented amplitude of 100 mK
and transfer coefficients exceeding 1 K per flux quantum at 25 mK. Then, this
quantum structure represents a fundamental step towards the realization of
caloritronic logic components, such as thermal transistors, switches and memory
devices [10,11]. These elements, combined with heat interferometers [3,4,12]
and diodes [13,14], would complete the thermal conversion of the most important
phase-coherent electronic devices and benefit cryogenic microcircuits requiring
energy management, such as quantum computing architectures and radiation
sensors.Comment: 10 pages, 9 color figure
A normal metal tunnel-junction heat diode
We propose a low-temperature thermal rectifier consisting of a chain of three
tunnel-coupled normal metal electrodes. We show that a large heat rectification
is achievable if the thermal symmetry of the structure is broken and the
central island can release energy to the phonon bath. The performance of the
device is theoretically analyzed and, under the appropriate conditions,
temperature differences up to 200 mK between the forward and reverse
thermal bias configurations are obtained below 1 K, corresponding to a
rectification ratio 2000. The simplicity intrinsic to its
design joined with the insensitivity to magnetic fields make our device
potentially attractive as a fundamental building block in solid-state thermal
nanocircuits and in general-purpose cryogenic electronic applications requiring
energy management.Comment: 4.5 pages, 4 color figure
Electrostatic tailoring of magnetic interference in quantum point contact ballistic Josephson junctions
The magneto-electrostatic tailoring of the supercurrent in quantum point
contact ballistic Josephson junctions is demonstrated. An etched InAs-based
heterostructure is laterally contacted to superconducting niobium leads and the
existence of two etched side gates permits, in combination with the application
of a perpendicular magnetic field, to modify continuously the magnetic
interference pattern by depleting the weak link. For wider junctions the
supercurrent presents a Fraunhofer-like interference pattern with periodicity
h/2e whereas by shrinking electrostatically the weak link, the periodicity
evolves continuously to a monotonic decay. These devices represent novel
tunable structures that might lead to the study of the elusive Majorana
fermions.Comment: 4.5 pages, 4 color figure
InAs nanowire superconducting tunnel junctions: spectroscopy, thermometry and nanorefrigeration
We demonstrate an original method -- based on controlled oxidation -- to
create high-quality tunnel junctions between superconducting Al reservoirs and
InAs semiconductor nanowires. We show clean tunnel characteristics with a
current suppression by over orders of magnitude for a junction bias well
below the Al gap . The experimental data
are in close agreement with the BCS theoretical expectations of a
superconducting tunnel junction. The studied devices combine small-scale tunnel
contacts working as thermometers as well as larger electrodes that provide a
proof-of-principle active {\em cooling} of the electron distribution in the
nanowire. A peak refrigeration of about is achieved
at a bath temperature in our prototype
devices. This method opens important perspectives for the investigation of
thermoelectric effects in semiconductor nanostructures and for nanoscale
refrigeration.Comment: 6 pages, 4 color figure
Scaling of Majorana Zero-Bias Conductance Peaks
We report an experimental study of the scaling of zero-bias conductance peaks
compatible with Majorana zero modes as a function of magnetic field, tunnel
coupling, and temperature in one-dimensional structures fabricated from an
epitaxial semiconductor-superconductor heterostructure. Results are consistent
with theory, including a peak conductance that is proportional to tunnel
coupling, saturates at , decreases as expected with field-dependent
gap, and collapses onto a simple scaling function in the dimensionless ratio of
temperature and tunnel coupling.Comment: Accepted in Physical Review Letter
Josephson effect in ballistic semiconductor nanostructures
The Josephson effect [1] is one of the most remarkable macroscopic manifestations of quantum mechanics. It consists in the dissipationless flowing of a phase-coherent current between two superconducting leads, coupled by a weak-link. The weak-link can be made of a thin insulating layer (S-I-S junctions) or a short section of normal conducting material (S-N-S junctions) [2]. In recent years, semiconducting weak-links have been the focus of increasing interest driven by the fast development of semiconductor electronic devices. Research on such hybrid superconductor/semiconductor devices has been further expanded by the realization of Two-Dimensional Electron Gases (2DEGs) in semiconductor heterostructures, in which carrier density can be finely controlled and large mobilities can be achieved. This, in particular, has opened the way to the fabrication of ballistic hybrid junctions [3]. In these devices new quantum effects can be observed, which rely on the large Fermi wave-length and electron mean free path of 2DEGs compared to purely metallic structures. A prominent example was the observation of the Josephson current quantization, obtained in a superconducting Quantum Point Contact (QPC) constriction [4].
In this thesis work we have investigated the transport properties of ballistic S-2DEG-S junctions, in which the 2DEG is hosted in an InAs-based quantum well. We studied two different designs of the InAs-based semiconducting region: a QPC and a Quantum Ring (QR). First, we fabricated normal QPCs and QRs observing conductance quantization [5] and the magneto-electrostatic Aharonov-Bohm (AB) interference effect [6]. Then, we replaced the normal contacts with Nb leads, thereby fabricating S-QPC-S and S-QR-S junctions. In both these junctions we were able to manipulate the Josephson current by applying external magneto-electrostatic fields. In the case of S-QPC-S junctions, we observed a magnetic interference pattern of the supercurrent and we electrically tailored it by using side gates [7]. We qualitatively confirmed the theoretical predictions made by Barzykin and Zagoskin [8] for the evolution of the interference pattern as a function of the gate voltage and temperature.
In S-QR-S junctions, we found that the magnetic modulation of the Josephson current displays a periodicity h/e [9] (where h is the Planck’s constant and e is the electron charge) typical of the AB effect, in contrast to the standard h/2e period observed in conventional Superconducting Quantum Interference Devices (SQUIDs), implemented either with two Josephson junctions in parallel [2] or with metallic rings in the diffusive regime [10]. This difference stems from the topology and the ballistic nature of our junction, which consists of a single ring-shaped weak-link connecting the same superconducting leads. Within the ballistic weak-link the electrons are influenced by the external magnetic field as in a normal QR, thus giving rise to the AB periodicity of the supercurrent interference pattern. The obtained result agrees with the theoretical analysis made by Dolcini and Giazotto [11] for this particular system and offer the first experimental verification of this effect.
The investigated devices can be sought as promising building blocks to implement fully controllable Josephson -junctions [11], which are of great interest in quantum computing. In addition, such ballistic superconducting interferometers might pave the way to the experimental investigation of topological superconductors, that may support the existence of Majorana fermions [12].
[1] B. D. Josephson, Phys. Lett. 1, 251 (1962).
[2] M. Tinkham, Introduction to superconductivity, McGraw-Hill, 1996.
[3] T. Schäpers, Superconductor/semiconductor junctions, Springer, 2001.
[4] H. Takayanagi et al., Phys. Rev. Lett. 75, 3533 (1995).
[5] B. J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988).
[6] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[7] M. Amado et al., in preparation.
[8] V. Barzykin and A. M. Zagoskin, Superlattices Microstruct. 25, 797 (1999).
[9] A. Fornieri et al., arXiv: 1211.1629v1.
[10] J. Wei et al., Phys. Rev. B 84, 224519 (2011)
[11] F. Dolcini, F. Giazotto, Phys. Rev. B 75, 140511 (2007).
[12] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)
Cosmic-ray transport in the Milky Way and related phenomenology
Tesis doctoral inédita cotutelada por la Università di Siena y la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física Teórica. Fecha de lectura: 17-05-2021In this thesis, we aim at studying some of the open questions regarding the origin of the Cosmic Rays (CRs), as well as their transport properties.
The exceptional quality of the experimentally measured cosmic-ray observables, especially at the recently-achieved energies in the range ∼O(100 GeV − 1 TeV), started to question the standard picture, based on a Supernova Remnant-(SNR)-only origin of the CRs and a diffusive propagation inspired by the Quasi-Linear Theory (QLT) of pitch-angle interaction against alfvénic turbulence.
First, we reproduce the most relevant cosmic-ray observables to tune the propagation setup, numerically solving the transport equation with the DRAGON code. On top of this, to account for the rising of the e+ above ∼ 10 GeV, we fit a primary population of positrons originating in Pulsar Wind Nebulae, in a model-independent setup that considers the uncertainties in the pulsar injections mechanism. Since the all-lepton spectrum is still not reproduced above ∼ 50 GeV — and in particular the ∼ TeV break — we consider the contribution from a nearby source of e−, and conclude that an old (tage ∼ 105 yr) SNR, located between ∼ 600 pc and ∼ 1 kpc, is probably missing from the Catalogues.
+
Within the hypothesis of such old remnant in its radiative phase contributing to the e + e−, we search for its signature in the proton flux as well. To do this, we consider a phenomenological propagation setup that reproduces the hadronic spectral hardening at ∼ 200 GeV as a diffusive feature (D(E) ∝ Eδ(E)), and adopt it consistently for the large-scale background and for the nearby source. Within this framework, we account for the all-lepton spectrum, the proton spectrum and the cosmicray dipole anisotropy with the same old (tage =2 · 105 yr), nearby (d = 300 pc) remnant. We highlight that the progressively hardening diffusion coefficient is a crucial ingredient, since, in a single-power-law diffusion scenario, the dipole anisotropy data would be overshot by, at least, one order of magnitude.
Finally, we explore the phenomenological implications of a change of paradigm in the standard cosmic-ray diffusion — based on wave-particle interaction with Alfvén fluctuations — considering a non-linear extension of the QLT that enhances the efficiency of CR-scattering with the other MagnetoHydro-Dynamic (MHD) modes. Indeed, assuming the anisotropy of the alfvénic cascade, its scattering rate at all energies below ∼ 100 TeV is not able to confine charged cosmic rays, and the fast magnetosonic modes alone shape the diffusion coefficient that particles experience in the Galaxy. Within such picture, we implement the resulting D(E) in DRAGON2, where two independent zones differently affect the evolution of the MHD cascade: the Halo (LHalo ∼ 5 − 6 kpc) and the Warm Ionized Medium (LWIM ∼ 1 kpc). We find that, with a reasonable choice of selected quantities, representing the physics of the environments, we can reproduce the hadronic fluxes, as well as the boron-over-carbon ratio, from ∼ 200 GeV above. We assign to the rising of the streaming instabilities the cosmic-ray transport below this energy
Nanoscale phase-engineering of thermal transport with a Josephson heat modulator
Macroscopic quantum phase coherence has one of its pivotal expressions in the
Josephson effect [1], which manifests itself both in charge [2] and energy
transport [3-5]. The ability to master the amount of heat transferred through
two tunnel-coupled superconductors by tuning their phase difference is the core
of coherent caloritronics [4-6], and is expected to be a key tool in a number
of nanoscience fields, including solid state cooling [7], thermal isolation [8,
9], radiation detection [7], quantum information [10, 11] and thermal logic
[12]. Here we show the realization of the first balanced Josephson heat
modulator [13] designed to offer full control at the nanoscale over the
phase-coherent component of thermal currents. Our device provides
magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a
maximum of the flux-to-temperature transfer coefficient reaching 200 mK per
flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the
exact correspondence in the phase-engineering of charge and heat currents,
breaking ground for advanced caloritronic nanodevices such as thermal splitters
[14], heat pumps [15] and time-dependent electronic engines [16-19].Comment: 6+ pages, 4 color figure
- …
