10,124 research outputs found
The Impact of the Kansas Wheat Breeding Program on Wheat Yields, 1911–2006
This paper quantifies advances of the Kansas Agricultural Experiment Station (KAES) wheat breeding program for two time periods: (1) 1911 to 2006 and (2) 1977 to 2006. Using multiple regression, increases in yields of wheat varieties grown in Kansas are quantified, holding growing conditions and other improvements in productivity constant. Differences in KAES variety yields and those released by other public and private breeders are quantified. During the ‘‘new age’’ of wheat breeding (1977–2006), wheat breeding alone is found to have increased yields by 6.182 bushels per acre, or an average increase of 0.206 bushels per year.wheat yield, public wheat breeding, multiplicative heteroscedasticity, economic impact of technological change, Agribusiness, Farm Management, O13, Q16,
Organ failure, outcomes and deprivation status among critically ill cirrhosis patients — a one-year cohort study
No abstract available
A gamma ray monitor for the OSO-7 spacecraft
A 3 in. x 3 in. NaI(Tl) gamma ray (0.3 to 10 MeV) spectrometer with a CsI(Na) charged particle and anti-Compton shield has been developed for the Orbiting Solar Observatory (OSO-7) which was launched September 30, 1971. The instrument, designed for a rotating wheel compartment, utilizes a 377 channel quadratic PHA with accumulation times of 3, 1, or 0.5 minutes. Quick look and calibration data obtained via a direct data link to a minicomputer allows near real time monitoring and control of the experiment. Various commands changing the operating mode can be executed. The functions which can be commanded include: rotation of the quadrants in which data is collected by 90 deg; gain adjustment of the central detector over a 6:1 range; manual or automatic sequencing of calibrations; variations of accumulation times by telemetering selected channels; and selection of reference directions. A small X-ray detector covering the range 7.5 to 120 keV is also included
Gamma ray production in paraffin by cosmic rays
Gamma ray production in paraffin by cosmic ray
A Weakly Supervised Approach for Estimating Spatial Density Functions from High-Resolution Satellite Imagery
We propose a neural network component, the regional aggregation layer, that
makes it possible to train a pixel-level density estimator using only
coarse-grained density aggregates, which reflect the number of objects in an
image region. Our approach is simple to use and does not require
domain-specific assumptions about the nature of the density function. We
evaluate our approach on several synthetic datasets. In addition, we use this
approach to learn to estimate high-resolution population and housing density
from satellite imagery. In all cases, we find that our approach results in
better density estimates than a commonly used baseline. We also show how our
housing density estimator can be used to classify buildings as residential or
non-residential.Comment: 10 pages, 8 figures. ACM SIGSPATIAL 2018, Seattle, US
A simple two-module problem to exemplify building-block assembly under crossover
Theoretically and empirically it is clear that a genetic algorithm with crossover will outperform a genetic algorithm without crossover in some fitness landscapes, and vice versa in other landscapes. Despite an extensive literature on the subject, and recent proofs of a principled distinction in the abilities of crossover and non-crossover algorithms for a particular theoretical landscape, building general intuitions about when and why crossover performs well when it does is a different matter. In particular, the proposal that crossover might enable the assembly of good building-blocks has been difficult to verify despite many attempts at idealized building-block landscapes. Here we show the first example of a two-module problem that shows a principled advantage for cross-over. This allows us to understand building-block assembly under crossover quite straightforwardly and build intuition about more general landscape classes favoring crossover or disfavoring it
Report of the direct infrared sensors panel
The direct infrared sensors panel considered a wide range of options for technologies relevant to the science goals of the Astrotech 21 mission set. Among the technologies assessed are: large format arrays; photon counting detectors; higher temperature 1 to 10 micro-m arrays; impurity band conduction (IBC) or blocked impurity band (BIB) detectors; readout electronics; and adapting the Space Infrared Telescope Facility and Hubble Space Telescope. Detailed development plans were presented for each of these technology areas
Slow dynamics near glass transitions in thin polymer films
The -process (segmental motion) of thin polystyrene films supported
on glass substrate has been investigated in a wider frequency range from
10 Hz to 10 Hz using dielectric relaxation spectroscopy and thermal
expansion spectroscopy. The relaxation rate of the -process increases
with decreasing film thickness at a given temperature above the glass
transition. This increase in the relaxation rate with decreasing film thickness
is much more enhanced near the glass transition temperature. The glass
transition temperature determined as the temperature at which the relaxation
time of the -process becomes a macroscopic time scale shows a distinct
molecular weight dependence. It is also found that the Vogel temperature has
the thickness dependence, i.e., the Vogel temperature decreases with decreasing
film thickness. The expansion coefficient of the free volume is
extracted from the temperature dependence of the relaxation time within the
free volume theory. The fragility index is also evaluated as a function of
thickness. Both and are found to decrease with decreasing film
thickness.Comment: 9 pages, 7 figures, and 2 table
- …
