8,305 research outputs found
Vortex-loop calculation of the specific heat of superfluid ^{4}He under pressure.
Vortex-loop renormalization is used to compute the specific heat of superfluid ^{4}He near the lambda point at various pressures up to 26 bars. The input parameters are the pressure dependence of T_{λ} and the superfluid density, which determine the nonuniversal parameters of the vortex core energy and core size. The results for the specific heat are found to be in good agreement with experimental data, matching the expected universal pressure dependence to within about 5%. The nonuniversal critical amplitude of the specific heat is found to be in reasonable agreement, a factor of four larger than the experiments. We point out problems with recent Gross-Pitaevskii simulations that claimed the vortex-loop percolation temperature did not match the critical temperature of the superfluid phase transition
Increasing subsequences and the hard-to-soft edge transition in matrix ensembles
Our interest is in the cumulative probabilities Pr(L(t) \le l) for the
maximum length of increasing subsequences in Poissonized ensembles of random
permutations, random fixed point free involutions and reversed random fixed
point free involutions. It is shown that these probabilities are equal to the
hard edge gap probability for matrix ensembles with unitary, orthogonal and
symplectic symmetry respectively. The gap probabilities can be written as a sum
over correlations for certain determinantal point processes. From these
expressions a proof can be given that the limiting form of Pr(L(t) \le l) in
the three cases is equal to the soft edge gap probability for matrix ensembles
with unitary, orthogonal and symplectic symmetry respectively, thereby
reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page
Early Social Interaction: A Case Comparison of Developmental Pragmatics and Psychoanalytic Theory
This book brings together various threads of the research work I have been
involved with over a number of years. This research is based on a longitudinal
video recorded study of one ofmydaughters as shewas learning howto talk. The
impetus for engaging in this work arose from a sense that within developmental
psychology and child language, when people are interested in understanding
howchildren use language, they seem over-focused or concerned with questions
of formal grammar and semantics. My interest is on understanding how a
child learns to talk and through this process is then understood as being or
becoming a member of a culture. When a young child is learning how to
engage in everyday interaction she has to acquire those competencies that
allow her to be simultaneously oriented to the conventions that inform talk-ininteraction
and at the same time deal with the emotional or affective dimensions
of her experience. It turns out that in developmental psychology these domains
are traditionally studied separately or at least by researchers whose interests
rarely overlap. In order to understand better early social relations (parent–child
interaction), I want to pursue the idea that we will benefit by studying both
early pragmatic development and emotional development. Not surprisingly,
the theoretical positions underlying the study of these domains provide very
different accounts of human development and this book illuminates why this
might be the case. What follows will I hope serve as a case-study on the
interdependence between the analysis of social interaction and subsequent
interpretation
Correlations in two-component log-gas systems
A systematic study of the properties of particle and charge correlation
functions in the two-dimensional Coulomb gas confined to a one-dimensional
domain is undertaken. Two versions of this system are considered: one in which
the positive and negative charges are constrained to alternate in sign along
the line, and the other where there is no charge ordering constraint. Both
systems undergo a zero-density Kosterlitz-Thouless type transition as the
dimensionless coupling is varied through . In
the charge ordered system we use a perturbation technique to establish an
decay of the two-body correlations in the high temperature limit.
For , the low-fugacity expansion of the asymptotic
charge-charge correlation can be resummed to all orders in the fugacity. The
resummation leads to the Kosterlitz renormalization equations.Comment: 39 pages, 5 figures not included, Latex, to appear J. Stat. Phys.
Shortened version of abstract belo
The averaged characteristic polynomial for the Gaussian and chiral Gaussian ensembles with a source
In classical random matrix theory the Gaussian and chiral Gaussian random
matrix models with a source are realized as shifted mean Gaussian, and chiral
Gaussian, random matrices with real , complex ( and
real quaternion ) elements. We use the Dyson Brownian motion model
to give a meaning for general . In the Gaussian case a further
construction valid for is given, as the eigenvalue PDF of a
recursively defined random matrix ensemble. In the case of real or complex
elements, a combinatorial argument is used to compute the averaged
characteristic polynomial. The resulting functional forms are shown to be a
special cases of duality formulas due to Desrosiers. New derivations of the
general case of Desrosiers' dualities are given. A soft edge scaling limit of
the averaged characteristic polynomial is identified, and an explicit
evaluation in terms of so-called incomplete Airy functions is obtained.Comment: 21 page
Difference system for Selberg correlation integrals
The Selberg correlation integrals are averages of the products
with respect to the Selberg
density. Our interest is in the case , , when this
corresponds to the -th moment of the corresponding characteristic
polynomial. We give the explicit form of a matrix linear
difference system in the variable which determines the average, and we
give the Gauss decomposition of the corresponding matrix.
For a positive integer the difference system can be used to efficiently
compute the power series defined by this average.Comment: 21 page
Random Matrix Theory and the Sixth Painlev\'e Equation
A feature of certain ensembles of random matrices is that the corresponding
measure is invariant under conjugation by unitary matrices. Study of such
ensembles realised by matrices with Gaussian entries leads to statistical
quantities related to the eigenspectrum, such as the distribution of the
largest eigenvalue, which can be expressed as multidimensional integrals or
equivalently as determinants. These distributions are well known to be
-functions for Painlev\'e systems, allowing for the former to be
characterised as the solution of certain nonlinear equations. We consider the
random matrix ensembles for which the nonlinear equation is the form
of \PVI. Known results are reviewed, as is their implication by way of series
expansions for the distributions. New results are given for the boundary
conditions in the neighbourhood of the fixed singularities at of
\PVI displayed by a generalisation of the generating function for the
distributions. The structure of these expansions is related to Jimbo's general
expansions for the -function of \PVI in the neighbourhood of its
fixed singularities, and this theory is itself put in its context of the linear
isomonodromy problem relating to \PVI.Comment: Dedicated to the centenary of the publication of the Painlev\'e VI
equation in the Comptes Rendus de l'Academie des Sciences de Paris by Richard
Fuchs in 190
{\bf -Function Evaluation of Gap Probabilities in Orthogonal and Symplectic Matrix Ensembles}
It has recently been emphasized that all known exact evaluations of gap
probabilities for classical unitary matrix ensembles are in fact
-functions for certain Painlev\'e systems. We show that all exact
evaluations of gap probabilities for classical orthogonal matrix ensembles,
either known or derivable from the existing literature, are likewise
-functions for certain Painlev\'e systems. In the case of symplectic
matrix ensembles all exact evaluations, either known or derivable from the
existing literature, are identified as the mean of two -functions, both
of which correspond to Hamiltonians satisfying the same differential equation,
differing only in the boundary condition. Furthermore the product of these two
-functions gives the gap probability in the corresponding unitary
symmetry case, while one of those -functions is the gap probability in
the corresponding orthogonal symmetry case.Comment: AMS-Late
- …
