82 research outputs found

    The differential hormonal milieu of morning versus evening, may have an impact on muscle hypertrophic potential

    Get PDF
    Substantial gains in muscle strength and hypertrophy are clearly associated with the routine performance of resistance training. What is less evident is the optimal timing of the resistance training stimulus to elicit these significant functional and structural skeletal muscle changes. Therefore, this investigation determined the impact of a single bout of resistance training performed either in the morning or evening upon acute anabolic signalling (insulin-like growth factor-binding protein-3 (IGFBP-3), myogenic index and differentiation) and catabolic processes (cortisol). Twenty-four male participants (age 21.4±1.9yrs, mass 83.7±13.7kg) with no sustained resistance training experience were allocated to a resistance exercise group (REP). Sixteen of the 24 participants were randomly selected to perform an additional non-exercising control group (CP) protocol. REP performed two bouts of resistance exercise (80% 1RM) in the morning (AM: 0800 hrs) and evening (PM: 1800 hrs), with the sessions separated by a minimum of 72 hours. Venous blood was collected immediately prior to, and 5 min after, each resistance exercise and control sessions. Serum cortisol and IGFBP-3 levels, myogenic index, myotube width, were determined at each sampling period. All data are reported as mean ± SEM, statistical significance was set at P≤0.05. As expected a significant reduction in evening cortisol concentration was observed at pre (AM: 98.4±10.5, PM: 49.8±4.4 ng/ml, P0.05). Timing of resistance training regimen in the evening appears to augment some markers of hypertrophic potential, with elevated IGFBP-3, suppressed cortisol and a superior cellular environment. Further investigation, to further elucidate the time course of peak anabolic signalling in morning vs evening training conditions, are timely

    A review of the renal system and diurnal variations of renal activity in livestock

    Get PDF
    Kidneys are the main organs regulating water-electrolyte homeostasis in the body. They are responsible for maintaining the total volume of water and its distribution in particular water spaces, for electrolyte composition of systemic fluids and also for maintaining acid-base balance. These functions are performed by the plasma filtration process in renal glomeruli and the processes of active absorption and secretion in renal tubules, all adjusted to an 'activity-rest' rhythm. These diurnal changes are influenced by a 24-hour cycle of activity of hormones engaged in the regulation of renal activity. Studies on spontaneous rhythms of renal activity have been carried out mainly on humans and laboratory animals, but few studies have been carried out on livestock animals. Moreover, those results cover only some aspects of renal physiology. This review gives an overview of current knowledge concerning renal function and diurnal variations of some renal activity parameters in livestock, providing greater understanding of general chronobiological processes in mammals. Detailed knowledge of these rhythms is useful for clinical, practical and pharmacological purposes, as well as studies on their physical performance

    Mental health in the aged: prevalence, covariates and related neuroendocrine, cardiovascular and inflammatory factors of successful aging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although aging is accompanied by diminished functioning, many elderly individuals preserve a sense of well-being. While the concept of "successful aging" has been popular for many decades, little is known about its psycho-physiologic and endocrine underpinnings. KORA-Age is a population-based, longitudinal study designed to determine the prevalence of successfully aged men and women between 65 and 94 years old in the MONICA/KORA Augsburg cohort of randomly selected inhabitants. Specifically, we aim to identify predictors of successful aging and to elucidate bio-psychosocial mechanisms that maintain mental health and successful adaptation despite adverse experiences of life and aging.</p> <p>Methods/Design</p> <p>Components of successful aging were assessed in a telephone survey of 4,127 participants (2008-2009) enrolled in the MONICA/KORA cohort, on average, 13 years earlier. Psychosocial, somatic and behavioural predictors are used to determine factors that contribute to successful aging. An age-stratified random sub-sample (n = 1,079) participated in a personal interview where further psychological mechanisms that may underlie successful adaptation (resilience, social support, attachment) were examined. The interactions among neuroendocrine systems in the aging process are investigated by studying the cortisol/dehydroepiandrosterone-sulfate ratio, the level of insulin-like growth factor I, and oxytocin.</p> <p>Discussion</p> <p>Longitudinal determinants of successful aging can be assessed based on a follow-up of an average of 13 years. A comprehensive analysis of biological as well as physio-psychological information provides a unique opportunity to investigate relevant outcomes such as resilience and frailty in the elderly population.</p

    3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings

    Get PDF
    RATIONALE: 3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been interpreted as neurotoxicity. Whether such 5-HT deficits reflect neuronal damage is a matter of ongoing debate. OBJECTIVE: The present paper reviews four specific issues related to the hypothesis of MDMA neurotoxicity in rats: (1) the effects of MDMA on monoamine neurons, (2) the use of “interspecies scaling” to adjust MDMA doses across species, (3) the effects of MDMA on established markers of neuronal damage, and (4) functional impairments associated with MDMA-induced 5-HT depletions. RESULTS: MDMA is a substrate for monoamine transporters, and stimulated release of 5-HT, NE, and DA mediates effects of the drug. MDMA produces neurochemical, endocrine, and behavioral actions in rats and humans at equivalent doses (e.g., 1–2 mg/kg), suggesting that there is no reason to adjust doses between these species. Typical doses of MDMA causing long-term 5-HT depletions in rats (e.g., 10–20 mg/kg) do not reliably increase markers of neurotoxic damage such as cell death, silver staining, or reactive gliosis. MDMA-induced 5-HT depletions are accompanied by a number of functional consequences including reductions in evoked 5-HT release and changes in hormone secretion. Perhaps more importantly, administration of MDMA to rats induces persistent anxiety-like behaviors in the absence of measurable 5-HT deficits. CONCLUSIONS: MDMA-induced 5-HT depletions are not necessarily synonymous with neurotoxic damage. However, doses of MDMA which do not cause long-term 5-HT depletions can have protracted effects on behavior, suggesting even moderate doses of the drug may pose risks

    Diurnal variation in the effect of melatonin on neurohypophysial hormone release from the rat hypothalamus.

    No full text
    Secretion of neurohypophysial hormones can show a diurnal variation. This has been investigated further in rats maintained on 14 h light:10 h dark using a previously validated in vitro technique employing hypothalami obtained at three different times, 2-3 h after lights on (group A), 13-14 h after lights on (group B), and at 4-5 h after lights off (group C). Hormone release under basal conditions and following stimulation with 40 mM KCl was monitored with or without added melatonin in the concentration range 4.3-43 nM. Basal release of hormone was not influenced by the time of day when the animals were taken, although stimulated release was elevated at midnight. In groups A and B both doses of melatonin significantly reduced basal and stimulated release of vasopressin and basal release of oxytocin (p < 0.01), although no effect was seen in group C animals. Inhibition of stimulated oxytocin release was only produced in group B. These findings suggest that the inhibitory effect of melatonin depends on the time of day and are consistent with the suggestion that melatonin secretion during the dark period may acutely downregulate binding sites in the brain
    corecore