13,667 research outputs found
Pan-STARRS1 Discovery of Two Ultraluminous Supernovae at z ≈ 0.9
We present the discovery of two ultraluminous supernovae (SNe) at z ≈ 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M_(bol) ≈ –22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) × 10^(51) erg. We find photospheric velocities of 12,000-19,000 km s^(–1) with no evidence for deceleration measured across ~3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star
Emergence of Long-range Correlations and Rigidity at the Dynamic Glass Transition
At the microscopic level, equilibrium liquid's translational symmetry is
spontaneously broken at the so-called dynamic glass transition predicted by the
mean-field replica approach. We show that this fact implies the emergence of
Goldstone modes and long-range density correlations. We derive and evaluate a
new statistical mechanical expression for the glass shear modulus.Comment: 4 page
Monte Carlo simulations of liquid crystals near rough walls
The effect of surface roughness on the structure of liquid crystalline fluids near solid substrates is studied by Monte Carlo simulations. The liquid crystal is modeled as a fluid of soft ellipsoidal molecules and the substrate is modeled as a hard wall that excludes the centers of mass of the fluid molecules. Surface roughness is introduced by embedding a number of molecules with random positions and orientations within the wall. It is found that the density and order near the wall are reduced as the wall becomes rougher, i.e., the number of embedded molecules is increased). Anchoring coefficients are determined from fluctuations in the reciprocal space order tensor. It is found that the anchoring strength decreases with increasing surface roughness
Supernova 2009kf: An Ultraviolet Bright Type IIP Supernova Discovered with Pan-STARRS 1 and GALEX
We present photometric and spectroscopic observations of a luminous Type IIP Supernova (SN) 2009kf discovered by the Pan-STARRS 1 (PS1) survey and also detected by the Galaxy Evolution Explorer. The SN shows a plateau in its optical and bolometric light curves, lasting approximately 70 days in the rest frame, with an absolute magnitude of M_V = -18.4 mag. The P-Cygni profiles of hydrogen indicate expansion velocities of 9000 km s^(-1) at 61 days after discovery which is extremely high for a Type IIP SN. SN 2009kf is also remarkably bright in the near-ultraviolet (NUV) and shows a slow evolution 10-20 days after optical discovery. The NUV and optical luminosity at these epochs can be modeled with a blackbody with a hot effective temperature (T ~ 16,000 K) and a large radius (R ~ 1 × 10^(15) cm). The bright bolometric and NUV luminosity, the light curve peak and plateau duration, the high velocities, and temperatures suggest that 2009kf is a Type IIP SN powered by a larger than normal explosion energy. Recently discovered high-z SNe (0.7 < z < 2.3) have been assumed to be IIn SNe, with the bright UV luminosities due to the interaction of SN ejecta with a dense circumstellar medium. UV-bright SNe similar to SN 2009kf could also account for these high-z events, and its absolute magnitude M_(NUV) = -21.5 ± 0.5 mag suggests such SNe could be discovered out to z ~ 2.5 in the PS1 survey
The WiggleZ Dark Energy Survey: Galaxy Evolution at 0.25 ≤ z ≤ 0.75 Using the Second Red-Sequence Cluster Survey
We study the evolution of galaxy populations around the spectroscopic WiggleZ sample of star-forming galaxies at 0.25 ≤ z ≤ 0.75 using the photometric catalog from the Second Red-Sequence Cluster Survey (RCS2). We probe the optical photometric properties of the net excess neighbor galaxies. The key concept is that the marker galaxies and their neighbors are located at the same redshift, providing a sample of galaxies representing a complete census of galaxies in the neighborhood of star-forming galaxies. The results are compared with those using the RCS WiggleZ Spare-Fibre (RCS-WSF) sample as markers, representing galaxies in cluster environments at 0.25 ≤ z ≤ 0.45. By analyzing the stacked color-color properties of the WiggleZ neighbor galaxies, we find that their optical colors are not a strong function of indicators of star-forming activities such as EW([O II]) or Galaxy Evolution Explorer (GALEX) near-UV luminosity of the markers. The galaxies around the WiggleZ markers exhibit a bimodal distribution on the color-magnitude diagram, with most of them located in the blue cloud. The optical galaxy luminosity functions (GLFs) of the blue neighbor galaxies have a faint-end slope α of ~ –1.3, similar to that for galaxies in cluster environments drawn from the RCS-WSF sample. The faint-end slope of the GLF for the red neighbors, however, is ~ –0.4, significantly shallower than the ~ –0.7 found for those in cluster environments. This suggests that the buildup of the faint end of the red sequence in cluster environments is in a significantly more advanced stage than that in the star-forming and lower galaxy density WiggleZ neighborhoods. We find that the red galaxy fraction (f_red) around the star-forming WiggleZ galaxies has similar values from z ~ 0.3 to z ~ 0.6 with f_red ~ 0.28, but drops to f_red ~ 0.20 at z gsim 0.7. This change of f_red with redshift suggests that there is either a higher rate of star-forming galaxies entering the luminosity-limited sample at z ≳ 0.7, or a decrease in the quenching rate of star formation at that redshift. Comparing to that in a dense cluster environment, the f_red of the WiggleZ neighbors is both considerably smaller and has a more moderate change with redshift, pointing to the stronger and more prevalent environmental influences on galaxy evolution in high-density regions
- …
