7,808 research outputs found
I-O Psychology in Aotearoa, New Zealand: A world away?
Industrial-organizational psychology has had a fairly long history in this country, dating back to around the 1920s (Jamieson & Paterson, 1993). To a large extent the field developed initially within universities, although the focus of I-O psychologists’ activities in this country has always been very applied. Inclusion of I-O psychology in university curricula originally started at the University of Canterbury (in the south island) and then Massey University (in the north island); now two other universities (University of Auckland and University of Waikato, both in the north island) also provide training programs in the field. There are about a dozen academics in psychology departments who would consider themselves to be I-O psychologists, and a small handful in management or HRM departments. Clearly the number of academics specializing in this field is very small. Although this poses challenges for the development of I-O psychology in Aotearoa New Zealand, at the same time it helps communication among us
Anomalous phase of MnP at very low field
Manganese phosphide MnP has been investigated for decades because of its rich
magnetic phase diagram. It is well known that the MnP exhibits the
ferromagnetic phase transition at \Tc=292 K and the helical magnetic phase
below \TN=47 K at zero field. Recently, a novel magnetic phase transition was
observed at K when the magnetic field is lower than 5 Oe. However,
the nature of the new phase has not been illuminated yet. In order to reveal
it, we performed the AC and the DC magnetization measurements for a single
crystal MnP at very low field. A divergent behavior of the real and the
imaginary part of the AC susceptibility and a sharp increase of the DC
magnetization was observed at , indicating the magnetic phase transition
at . Furthermore a peculiar temperature hysteresis was observed: namely,
the magnetization depends on whether cooling sample to the temperature lower
than \TN or not before the measurements. This hysteresis phenomenon suggests
the complicated nature of the new phase and a strong relation between the
magnetic state of the new phase and the helical structure.Comment: 4 pages, 2 figure
Large Chiral Diffeomorphisms on Riemann Surfaces and W-algebras
The diffeomorphism action lifted on truncated (chiral) Taylor expansion of a
complex scalar field over a Riemann surface is presented in the paper under the
name of large diffeomorphisms. After an heuristic approach, we show how a
linear truncation in the Taylor expansion can generate an algebra of symmetry
characterized by some structure functions. Such a linear truncation is
explicitly realized by introducing the notion of Forsyth frame over the Riemann
surface with the help of a conformally covariant algebraic differential
equation. The large chiral diffeomorphism action is then implemented through a
B.R.S. formulation (for a given order of truncation) leading to a more
algebraic set up. In this context the ghost fields behave as holomorphically
covariant jets. Subsequently, the link with the so called W-algebras is made
explicit once the ghost parameters are turned from jets into tensorial ghost
ones. We give a general solution with the help of the structure functions
pertaining to all the possible truncations lower or equal to the given order.
This provides another contribution to the relationship between KdV flows and
W-diffeomorphimsComment: LaTeX file, 31 pages, no figure. Version to appear in J. Math. Phys.
Work partly supported by Region PACA and INF
Recommended from our members
On the magnetospheric ULF wave counterpart of substorm onset
One near‐ubiquitous signature of substorms observed on the ground is the azimuthal structuring of the onset auroral arc in the minutes prior to onset. Termed auroral beads, these optical signatures correspond to concurrent exponential increases in ground ultralow frequency (ULF) wave power and are likely the result of a plasma instability in the magnetosphere. Here, we present a case study showing the development of auroral beads from a Time History of Events and Macroscale Interactions during Substorms (THEMIS) all‐sky camera with near simultaneous exponential increases in auroral brightness, ionospheric and conjugate magnetotail ULF wave power, evidencing their intrinsic link. We further present a survey of magnetic field fluctuations in the magnetotail around substorm onset. We find remarkably similar superposed epoch analyses of ULF power around substorm onset from space and conjugate ionospheric observations. Examining periods of exponential wave growth, we find the ground‐ and space‐based observations to be consistent, with average growth rates of ∼0.01 s−1, lasting for ∼4 min. Cross‐correlation suggests that the space‐based observations lead those on the ground by approximately 1–1.5 min. Meanwhile, spacecraft located premidnight and ∼10 RE downtail are more likely to observe enhanced wave power. These combined observations lead us to conclude that there is a magnetospheric counterpart of auroral beads and exponentially increasing ground ULF wave power. This is likely the result of the linear phase of a magnetospheric instability, active in the magnetotail for several minutes prior to auroral breakup
Invariants of differential equations defined by vector fields
We determine the most general group of equivalence transformations for a
family of differential equations defined by an arbitrary vector field on a
manifold. We also find all invariants and differential invariants for this
group up to the second order. A result on the characterization of classes of
these equations by the invariant functions is also given.Comment: 13 page
A comprehensive analysis of multi-scale field aligned currents: Characteristics, controlling parameters, and relationships
We explore the characteristics, controlling parameters, and relationships of multi-scale field aligned currents (FACs) using a rigorous, comprehensive, and cross-platform analysis. Our unique approach combines FAC data from the Swarm satellites and the Advanced Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) to create a database of small-scale (∼10-150 km, 250 km) FACs. We examine these data for the repeatable behavior of FACs across scales (i.e., the characteristics), the dependence on the interplanetary magnetic field (IMF) orientation, and the degree to which each scale ‘departs’ from nominal large-scale specification. We retrieve new information by utilizing magnetic latitude and local time dependence, correlation analyses, and quantification of the departure of smaller from larger scales. We find that: 1) FACs characteristics and dependence on controlling parameters do not map between scales in a straight forward manner; 2) relationships between FAC scales exhibit local time dependence; and 3) the dayside high-latitude region is characterized by remarkably distinct FAC behavior when analyzed at different scales, and the locations of distinction correspond to ‘anomalous’ ionosphere-thermosphere (IT) behavior. Comparing with nominal large-scale FACs, we find that differences are characterized by a horseshoe shape, maximizing across dayside local times, and that difference magnitudes increase when smaller scale observed FACs are considered. We suggest that both new physics and increased resolution of models are required to address the multi-scale complexities. We include a summary table of our findings to provide a quick reference for differences between multi-scale FACs
Structure and spacing of cellulose microfibrils in woody cell walls of dicots
The structure of cellulose microfibrils in situ in wood from the dicotyledonous (hardwood) species cherry and birch, and the vascular tissue from sunflower stems, was examined by wide-angle X-ray and neutron scattering (WAXS and WANS) and small-angle neutron scattering (SANS). Deuteration of accessible cellulose chains followed by WANS showed that these chains were packed at similar spacings to crystalline cellulose, consistent with their inclusion in the microfibril dimensions and with a location at the surface of the microfibrils. Using the Scherrer equation and correcting for considerable lateral disorder, the microfibril dimensions of cherry, birch and sunflower microfibrils perpendicular to the [200] crystal plane were estimated as 3.0, 3.4 and 3.3 nm respectively. The lateral dimensions in other directions were more difficult to correct for disorder but appeared to be 3 nm or less. However for cherry and sunflower, the microfibril spacing estimated by SANS was about 4 nm and was insensitive to the presence of moisture. If the microfibril width was 3 nm as estimated by WAXS, the SANS spacing suggests that a non-cellulosic polymer segment might in places separate the aggregated cellulose microfibrils
Marketing of Dietetic Products for Infants and Young Children in Europe Three Decades after Adoption of the International Code of Marketing of Breast Milk Substitutes
- …
