3,638 research outputs found
Quantum Global Strings and Their Correlation Functions
A full quantum description of global vortex strings is presented in the
framework of a pure Higgs system with a broken global U(1) symmetry in 3+1D. An
explicit expression for the string creation operator is obtained, both in terms
of the Higgs field and in the dual formulation where a Kalb-Ramond
antisymmetric tensor gauge field is employed as the basic field. The quantum
string correlation function is evaluated and from this, the string energy
density is obtained. Potential application in cosmology (cosmic strings) and
condensed matter (vortices in superfluids) are discussed.Comment: 14 pages, latex, no figure
Efficiency of the Wang-Landau algorithm: a simple test case
We analyze the efficiency of the Wang-Landau algorithm to sample a multimodal
distribution on a prototypical simple test case. We show that the exit time
from a metastable state is much smaller for the Wang Landau dynamics than for
the original standard Metropolis-Hastings algorithm, in some asymptotic regime.
Our results are confirmed by numerical experiments on a more realistic test
case
Test of Information Theory on the Boltzmann Equation
We examine information theory using the steady-state Boltzmann equation. In a
nonequilibrium steady-state system under steady heat conduction, the
thermodynamic quantities from information theory are calculated and compared
with those from the steady-state Boltzmann equation. We have found that
information theory is inconsistent with the steady-state Boltzmann equation.Comment: 12 page
Convergence of adaptive and interacting Markov chain Monte Carlo algorithms
Adaptive and interacting Markov chain Monte Carlo algorithms (MCMC) have been
recently introduced in the literature. These novel simulation algorithms are
designed to increase the simulation efficiency to sample complex distributions.
Motivated by some recently introduced algorithms (such as the adaptive
Metropolis algorithm and the interacting tempering algorithm), we develop a
general methodological and theoretical framework to establish both the
convergence of the marginal distribution and a strong law of large numbers.
This framework weakens the conditions introduced in the pioneering paper by
Roberts and Rosenthal [J. Appl. Probab. 44 (2007) 458--475]. It also covers the
case when the target distribution is sampled by using Markov transition
kernels with a stationary distribution that differs from .Comment: Published in at http://dx.doi.org/10.1214/11-AOS938 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Gravitational Lensing & Stellar Dynamics
Strong gravitational lensing and stellar dynamics provide two complementary
and orthogonal constraints on the density profiles of galaxies. Based on
spherically symmetric, scale-free, mass models, it is shown that the
combination of both techniques is powerful in breaking the mass-sheet and
mass-anisotropy degeneracies. Second, observational results are presented from
the Lenses Structure & Dynamics (LSD) Survey and the Sloan Lens ACS (SLACS)
Survey collaborations to illustrate this new methodology in constraining the
dark and stellar density profiles, and mass structure, of early-type galaxies
to redshifts of unity.Comment: 6 pages, 2 figures; Invited contribution in the Proceedings of XXIst
IAP Colloquium, "Mass Profiles & Shapes of Cosmological Structures" (Paris,
4-9 July 2005), eds G. A. Mamon, F. Combes, C. Deffayet, B. Fort (Paris: EDP
Sciences
Methods for heat transfer and temperature field analysis of the insulated diesel phase 2 progress report
This report describes work done during Phase 2 of a 3 year program aimed at developing a comprehensive heat transfer and thermal analysis methodology for design analysis of insulated diesel engines. The overall program addresses all the key heat transfer issues: (1) spatially and time-resolved convective and radiative in-cylinder heat transfer, (2) steady-state conduction in the overall structure, and (3) cyclical and load/speed temperature transients in the engine structure. During Phase 2, radiation heat transfer model was developed, which accounts for soot formation and burn up. A methodology was developed for carrying out the multi-dimensional finite-element heat conduction calculations within the framework of thermodynamic cycle codes. Studies were carried out using the integrated methodology to address key issues in low heat rejection engines. A wide ranging design analysis matrix was covered, including a variety of insulation strategies, recovery devices and base engine configurations. A single cylinder Cummins engine was installed at Purdue University, and it was brought to a full operational status. The development of instrumentation was continued, concentrating on radiation heat flux detector, total heat flux probe, and accurate pressure-crank angle data acquisition
Methods for heat transfer and temperature field analysis of the insulated diesel
Work done during phase 1 of a three-year program aimed at developing a comprehensive heat transfer and thermal analysis methodology oriented specifically to the design requirements of insulated diesel engines is reported. The technology developed in this program makes possible a quantitative analysis of the low heat rejection concept. The program is comprehensive in that it addresses all the heat transfer issues that are critical to the successful development of the low heat rejection diesel engine: (1) in-cylinder convective and radiative heat transfer; (2) cyclic transient heat transfer in thin solid layers at component surfaces adjacent to the combustion chamber; and (3) steady-state heat conduction in the overall engine structure. The Integral Technologies, Inc. (ITI) program is comprised of a set of integrated analytical and experimental tasks. A detailed review of the ITI program approach is provided, including the technical issues which underlie it and a summay of the methods that were developed
A Bose-Einstein condensate in a random potential
An optical speckle potential is used to investigate the static and dynamic
properties of a Bose-Einstein condensate in the presence of disorder. For
strong disorder the condensate is localized in the deep wells of the potential.
With smaller levels of disorder, stripes are observed in the expanded density
profile and strong damping of dipole and quadrupole oscillations is seen.
Uncorrelated frequency shifts of the two modes are measured for a weak disorder
and are explained using a sum-rules approach and by the numerical solution of
the Gross-Pitaevskii equation
- …
